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PREFACE

If the instruection of students is to keep pace with the rapid develop-
ment of statistical science, frequent publication of books based on the
most recent knowledge in the field is required. Therefore, the author’s
primary aim is to supply students with a book that is built on the recent
advances in statistical theory and practice. Because they approach the
study of statistics with different interests, aims, and backgrouilds, it is
not feasible to write onc text that can meet the require\rhenﬁs of all
classes of students. Whatever their approach, these students will have
onc thing in eommon, namely, they will need to acquir{r:a thorough func-
tional understanding of statistical principles to mar]%e\intcllig{mt use of
statistics. The differences in interpretation of anihors of statistical texts
as to what functional understanding involvessdem to range between the
belief that statistical principles are working fulés to be learned as quickly
as possible for their utilitarian value and’the’conviction that an advanced
knowledge of pure mathematics is the fifst requisite for the exposition
of statistieal principles. N

The author does not believe {hik either of these points of view is hest
for most of the students wh,o‘ne‘ed statigtical training for their work.
The former is likely to lead™6 blind, rule-of-thumb application of sta-
fistical formulas; the Qﬁ:cf is indispensable only for those who are to
become professional sfatisticians or mathematical statisticlans. Neither
practical applicatipns/nor mathematical analysis is excluded from this
book. In fact, problems have been used abundantly to illustrate prin-
ciples or resultf’y Also, a number of problems have been inserted whereby
the studerﬁ\:may test his understanding of the statistical theory. The
author g’ convinced that the detailed working, through of problems is
fund@zﬁgeﬁt-al to a funectional understanding of statistical technigues.
Similicly, application of the principles underlying the design of experi-
mental or observational projeets iz necessary if a thorough grasp of these
principles is to be secured. Fxperiences in application are necessary for
the student if he is to design offective experiments of his own or to evalu-
ate those of others. However, the problems are considered as auxiliaries
to the study of the principles.

Again, the mathematical analysis i not excluded because without
mathematies there could be no serious study of statistics. But mathe-
matics has been viewed ag the servant and not as the master. The
question of how much knowledge of mathematics ought to be assumed
g diffieult to answer. Not many students in the social and biological

il



viii PREFACE

sciences have s knowledge of caleulus. 1t is the view of the author that
the student should have at least a background in caleulus o be uble to
follow the theoretical material, which cannot be advantageously treated
without considerable use of calculus. The understanding of statistical
s well as other sclentific principles is relative, dependent upon what
intelligence, technical background, and experience the student may have.
Students with more knowledge of mathematics usually gain morve com-
plete understanding of the mathematical formulation underlying a par-
ticular statistical principle. They should, therefore, have the oppor-
tunity of ufilizing their more adequate preparation. Howeyer, the
number of students with special mathematical training is very Mmited.
But the student with, for example, no caleulus, may omit aheylow gec-
tions of the book in which the calculus is used. Xven @ithout these
sections, he should be able to acquire a considerablé~and continuous
knowledge of the essentials of statistics from the ydn-ter_:hnica], logical
treatment accorded to most of the essentials ingligybook.

Tt should alsc be explained where the book starts and where it ends.
This book does not start from the very bepinming of its subject. Aluny
upper-class students and most graduate ,s’rb&cnts have had an introduc-
tion to statistics, usually called descripfive statistics, dealing with the
clementary processes in the reduction of data. Such preliminary train-
ing iz assumed. Tf the student? f:l_oés not have it, the instructor may
prefer to begin the subject. by laying this clementary basc himsell.
This book deals with theprincipal objcotive of statistics, which is to
provide indispensable pools’ and methods for designing and exccuting
experimental and oflier “observational projects and for analyzing and
interpreting the results.

It would be @dvantageous to allot a full academic year to the objec-
tives of stabistital methods as presented here. However, adjustment
can be aide when less time is available by selecting certain portions
regar(%ed\ s most fundamental by the instructor.

‘E?J;Wi‘ls decided to bring the book to a close when its purpose wus
ageamplished, that is, after the common prineiples of statistics had been

ipvestigated. The aim was not to present topics of intercst to a few
students only.

£

The book is based on the content of & year’s course in statistics, and
was developed over a period of approximately ten years, primarily for
graduate students in education and in psychology, Dm,'ing this time,
co.ntent and method were continuously revised in light of experiences an(i
scientific development of the subject. ‘

The author considers himself especially fortunate in having been 2
v'olunteer “-'lorker_ at the Galton Laboratory for a year, during which
t}me he studied with Professor R. A Fisher, foremost in laying the?ou ncla~
tions of modern statistical methods. During this period"hebalso profited



PRETACE ix

from the lectures of and conferences with Profcssors J. Neyman and
Egon 8. Pearson.

The chief sources of information and help in developing the book have
becn the many serious students whose criticisms and reactions were of
inestimable value in attaining & clearer presentation of statistical methods.
Most signilicant was the help from my very capable assistants. Among
these should be especially mentioned Dr. Cyril Hoyt, Dr. Fei Tsao, Dr.
Garland Kyle, and Mr. Stanley Clark, all of whom have made direct
confributions to this work.

1 am greatly indebted to Dr. Robert W. B. Jackson of the.{Ini—
versity of Toronto for his critical reading and constructive criticisms of
the work in manuscript from which I received valuable suggegtions for
its improvement. N ¢

I am especially grateful to the following authors an'dj‘pﬁblishers for
their kind permission to reproduce certain tubles whichuare given in the
Appendix; ' A

(1) T am indebted to Professor R. A. Fishersand’ Dr. T. Yates, also
to Messrs. Oliver and Boyd Ltd., Edinburgh, fob permission to reprint
Tables No. 1II, Distribution of ¢, and Table Xé. 1V, Distribution of x*
from their book, Statistical Tables for Bio{qg{bal, Medical, and Agricultural
Research; D

(2) Profcssor George W. Snedecoy.’alnd The Iowa State College Press
for permission to reproduce Table d0¥—59% and 1%, Points for the Dis-
tribution of 7 from Statistical Mefpods (Fourth Edition), 1946;

(3) Professor Egon Peargamy Editor of Stetistical Research Memairs
to reproduce Table IV—5 %:h'mits for Ly and Table V—1 9, limits for L,
computed by P. P. N, Nayer.

Parver O. Jornson

A%/
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CHAPTER 1
THE REALM OF STATISTICS

STareTIcs IN DALY LiFg

Our entrance into and departure from this world are recorded as
statistical cvents. Birth and death, marriage and divorce, therschool
attendance of our children, the crops grown by farmers, the nutabor of
miles flown by commercial planes, the hours of our Iabor the output of
manufacturing planis, the acres of woed demanded for paper, the hours
of sunshine, the inches of snowfall—all such events gnd’activities are
recorded somehow and somewherc. Myriads of sigh” experiences and
events affecting the daily lives of roundly two bﬂi‘bn human beings lie
behind the statistical date condensed in w olumes, publlshcd and unpuh-
lished. In reverse, we are daily tra,nfslahnb Anto their rcal meaning
statistical duta obtained from ncwbpapeﬁ,\adlo reports, lectures, books,
and conversations, We act in accordhnee with the reality implied in
statistical data when we conserve fuel which is going to be scarce, when
we ship wheat which will be necessa,ljy after a poor harvest in a [oreign
country, when we take pre ca,utzo‘nary measures againgt a disease of which
unusually many cases have beeh recorded.

The conception of stam{sttcs as having to do with figures is the most
popular one, and for @ci reasons, The public is constantly exposed to
statistical data occur%*ng in advertisements, in arguments, and in the
distribution of information. If something is said to have been sta-
tistically proverl \opposition is supposed to become quiescent. Every-
where the ordimary citizen ncods some ability to distinguish between
what is \t;h and what is falsehood. In a democracy he needs it most
where he participates in the settlement of public problems and con-
’rrlbutes ‘toward the growth of public opinion. Citizens not only should

e able to look at controversial questions scientifically and dispassion-
atély; they should also acquire the habit of doing so. Education should
prepare them to cope intelligently with the problems of their lives and
times; they must learn not only to think for themselves but likewise to
act for thomselves. There is danger in the educational system of a
democracy when materials and methods of instruction are not keyed Lo
the formation of the scientific attitude and to the devclopment of the
ability to use the scientific method. The ability to use and serutinize
data, to look beneath the surface of things and to discern relations
between reality and given data, affords an important safeguard against

1



2 THE REALM OF STATISTICS [Crzar. 1

the dangers of omnipresent propaganda. The problem is to educate
man so that he would rather be guided by fact than by cmotion.

There is a noticeable similarity betwecn arithmetic and statistics with
respect to use in daily life. Arithmetic is so woven info the fabric of our
daily life and thought that we use it very often and almost subconscionsly.
With respoct to statistics we need only to recall such phrases as “highly
exceptional,” “relatively comstant,” “‘increases the probability,” and
“on the average.” However, arithmetic is a subject tanght in all
elementary schools, whereas statistics is taught searcely at all, although
its content is likely no more difficult than that of arithmetic at the swme
educational level. ' .

The practice of applying certain statistical methods, howe;:ér gimple
they may be, is a critical social need for all.  We must nog Yorget that
even the specialist lives in gencral society during at least ™ tyo-thirds of
the time. For this longer period he is a layman and negds the best pos-
sible quality of layman’s understanding. For his gdidance in the enrrent
of general human living, he needs statistical trainioy’

The most important and undisputed use of sthtisties in daily life i
teonnected with all the activities of politicﬁt‘,‘social, and commereial
“imstitutions which determine the economi¢ and cultural life of a nation.
In the realm of policy if is the function ehstatistics to measure the impor-
tance of various problems and to plageithem in a proper perspective.  In
many branches of government f&(}fgiwjl data already are governing policy
to a great extent. TFor instane, the decision to build a number of new
gchools and to engage mqrp@eachers implics legislative measures which
are based on statisticai\imrestiga.tions of the school-leaving age. the
rising birth rate, the ingrease of population through migration, and other
factors. Problems dn;the economie, industrial, and social ficlds, such as
increase or decreasé of employment, shortage of houses, expansion or
contraction of“e¥isting plants, decrease or increasc of crime—thesc and
thousands ot others should be solved statistically before political action
ccan be censidered. The whole structure of the national budget depends
o thg}ound appraisal of the relationship between potentizl sources of
reventie and planned expenditure. Local authorities need siatistical
information for the districts shey serve; national agencies need it for the
counfry; the organization of the United Nations needs it for the world.

It i essential that governmental agencies be preparcd to make the
fullest possible use of modern statistical methods. The public is entitled
to the benefit that may be derived from the progress in research. Old
methods are often wasteful or have been found unreliable, One should
expect that government, the foremost user of statistics on a large scale,
should pioneer in the application of modern statistical methods.

" The Iurge to adpply modern statistical dcl\fe%()p]n(gnt.s seems to be grea"ner
ere an Immediate personal advantage is involved in commercial life.
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There is even one branch of commercial acti\«ity which owes its existence
and all-pervasive dovelopment to statistics: ingurance. In many other
branches a combination of technical and statistical know ledge is used.
The planning of a large factory or combine is now a part of what is known
as ‘‘scientific management.” Many firms have planning departments
which use statistical returns and charts to a great degree. An unusual
¢xample Is furnished by the seemingly sentimental enterprise of manu-
facturing greeting eards, of which approximately three billion are mailed
each year in the United States, involving an annual sale of 135 million
dollars and postal charges of 100 million dollars. ““Statistical planuing,”
taking place in a special department one and a half years azhead“ef the
exhibition of & card in a store is the first step toward the sale{ DEvery-
where knowledge and experience are necded for planning{production,
distribution, and sales, although the statistical methodb used are often
not very elaborate. In administration, statisties pro"VJde measures of
performance and Lfﬁclency i Although the data dowebstate the causes of
inofficiency, if any, and do not directly effect 1mpr0vemont they are
pointers; their value depends entirely on the ugedvhich is made of them.

Underlying all planning is the guidance.derived from statistical data
of the past toward the goals desired for dlefuture. An insurance com-
pany guoting rates for an endowment, hfe policy to mature {wenty years
henee ean and must do go on the bams ‘of an estimate of future interest
rates and past mortality exper lenoes The size of & new factory iz deter-
mined partly by estimates of Tuture demands for tho products to be
manufactured. Most good§ for consumption are made or ordercd long
before they are sold.  Censumers, nowadays starting their own organiza-
tions, no less than producers and managers, are dependent, for forceful
action, on the instrwwmtnts provided by statistical methods. Thus if ig
profitable to be ghig’to foreeast trends for all economic groups: for busi-
ness managemﬁﬁt comprising large firms with international, long-range
distributic \as wall ag for the individual merchant supplying the immedi-
ate needs of a local neighborheod.

One ~Lh( other side, employees cverywhere are finding that it is of vital
importanm to labor and its ageregate organizations to use statisties,
whiéh represent tools in the formation of their organizations and programs.

The United States execls in using methods for forecasting trends in
every field of industry and public life.

SpaTISTICS IN THE SCIKYCES AND THE ARTS

Statistical devices have made their greatest advances in the scientifie
and technical branches of industry, where enterprise and science not only

meet but are amalgamated.
Perhaps no branch of mathematical scicnce has had a more rapid

growth than hag the science of statistics. In the span of the last sixty
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or eighty years the methods of statistics and the probability calculus have
infiltrated one branch of science after another, until they now hold a
central position in physics, biology, meteorology, chemistry, and
astronomy. Furthermore, statistics is also growing in significance in a
number of other fields, such as the political and social sciences. To what
may this remarkable growth most likely be attributed?

The introduction of a new theoretical device into a ficld of knowl-
edge may often secm incidental in that when it first becomes available,
it is used when it appears to be of value, just as the microscope, X rays, or
integral cquations may be tried out. In the case of statistics, however, its
introduction was not just ecasual. Q)

At first statistics was used apologetically, perhaps with th¢ fxcuse
that it was only an expedient to help overcome & temporary shigMéoming,
as in reducing large amounts of observational material in erder Lo study
details. Thus at first the new “weapon” was tried with the expectation
that it could be used in the study of detail, as in thegtutly of horeditary
transmission in individuals from one generationo€g another, or, as in
physies, to fill in the gap in knowledge in gas the{my with respect to initial
coordinates and velocities of the single atomd/y

Attitudes in scientific research shift at™{iines, perhaps unintentionally.
Interest in individuals shifted to the meghanism underlying the behavior
of aggregates of individuals. It wadisuddenly realized that even if the
individual case could be studied in¥etail, it would be necessary to follow
up thousands of individual casesin order ultimatcly to integrate them all
into one statistical enumeration.

Charles Darwin was i}ﬂhf appreciative of the essential funclion of
statistics in biological’study. His theory depended on the law of large
numbers. Every li¥Tng species is continually producing a multitude of
individuals. Om3be whole, the better-fitted ones live more abundantly
and have a betpér chance of survival. The large geometrical progression
of potentiak :f:szspring and the enormous destruction of actual offspring
to be infétved from it constitute the statistical mechanism operating to
proc}u\dq’*thc very small inerease in the chances of survival that a small
faworable variation bestows. .

The change in the status of statistics as a subordinate device was
most drastic in physics. Here it came to take the dominating role of
dcﬁ:nlng the goals and showing the ways of reaching them. Thus the
entire S?:-ructlfre .of geience was shaken, since it rests upon the foundation
of physics. ljh_ls role of statistics has led to a new understanding of the
esseﬂtl%l_qul&lltles of the laws of nature, namely, the change from &
deterministic f_ormulation of laws underlying the occurrence of natural
events fo one in terms of statistical regularities, based—as in Darwin’s
theory—on the law of large numbers. This transition from the interpre-
tation of physical laws based on the notion of causality to one derived
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from statistical theories is attributable largely to Boltzmann’s! interpre-
tation of the classical law of entropy, or the second law of thermody-
namics, as 1t i3 usually ealled. According to this interpretation, the
second law rests upon statistics. Rather, it is statistics; that is, it is a
purely statistical law. Ileat flows in the direction from higher to lower
temperature because the chance is only one in many billions that it is
likely to do otherwise. Events go in the direction in which it is most
probable that they will move (Ref, 5),

Purther developments, particularly the new quantum mechanics and
Heisenberg’s uncertainty principle, have revolutionized still more the
ustual concoption of the older classical physics und contributed foMthe
building of the edifice of the stalistical conception of natures .While
these changes have been taking place, the physicists have deydloped their
own statistical methods, particularly quantum statistics, Meuite apart
from the methods of statisties in other fields. Staidsiival ideas are
utilized in some modern chemical theories, such as the &tructural formula
of certain organic subsgtances like rubber and protéi‘tis, where chaing of
molecules of different weights and lengths are pdstulated. Tor example,
chemical changes in such substances are intefpreted as alterations in the
frequency distribution of chain length. N

The significance of the general phllosqphlcal implication of the statis-
tical formulations relating to the cofistruction of scientifie theories can
hardly be overrated. We are mdte directly concerned here, however,
with pointing out brielly the posmon that statistics holds today in certain
fields of scicnee and in techhology. Since about 1920, the statistical
approach has been acwptbd and welcomed by a steadily increasing
circle of scientific wor kQ\v, until today this approach iz probably one of
the most: characterlstic featurcs of modern science.

The role of sfalistics in science begins with the interpretation of
measurcmentsyy o Bven though the methods of the natural scicnces are
the most reliable thus far designed for finding out matters of fact, the
condusion&faxm from them are only probable, since they are hased on
evidenc&¥ormally incomplete. This fact is statistically described by the
atpag hment of a coefficient of error to the measurcment.

Take, for example, the measurement of the distance of the sun from
the earth, or, speaking more correctly, the semimajor axis of the earth’s
orbit, This ig the most important constant in astronomy, since it
establishes the scale not only of the solar system but alse of the whole
universe. It is used in almost any ealculation of distances and masses, of
sizes and densities of planets, of their satellites, and of the stars, There-
fore, any error in its calculation is multiplied and repeated in many
different forms. Its importance has stimulated measurements of ever-

1Tt should be noted that the work of Willard Gibbs followed parallel lines.
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inereasing accuracy. At present the measurement is 93,005,000 £ 9000
miles (p.e.);? that is, the distance is uncertain to 1 part in 10,000. One
hundred vears ago, the uncertainty was 1 part in 20. The progress in
the development of any science is indirectly given by the size of the errors
in its measurements.

Laboratory measurements in physics and chemistry are subject to
experimental crrors. Considerable attention has been given recently to
metheds of controlling and evaluating all variables that might coneciv-
ably influence the results. The purpose is to obtain reliable laboratory
standards, such as those of capacity, frequency, and voltage. Particu-
larly with the development of the sciences of biochemistry and biophsics,
measurements are required on material essentially variable. AA wide
field is under devolopment in which are used such statisticalshethods as
sampling, followed by analyzing and testing of the experimerntal results
as well as the closely related problem of approprigfe experimental
designs. These methods have inereasingly important/ applications in
industry. The same situation prevails also to a slighp extent in engincer-
ing—mostly in technical control and research. \Fngineers have devel-
oped methods of their own for dealing with théyariation in the materials
which they use. It is likely that the use pf:}rsatistical methods of treaf-
ing variations in these flelds would be mére efficient than the current
use of the factors of safety. '

Statistical methods are indispengable tools of the industrialist who is
concerned with the manufactuteé® or purchase of presumably similar
articles or units on a large sdale. However efficient the control of pro-
duction may be, the proc}ui!%‘.s are bound to vary, and it is necessary to
check the extent of vilafion by some plan of routine testing. The
conformity to the reqiiirements of a consignment of raw or manufactured
materials must be, ¥ehably established. Considerable headway has been
made in recend, yeéars in developing efficient statistical methods and
experimental{designs for meeting requirements. The productive process
must bo ifNa' state known as one of statistical control, the ecriterion for
which igrthe sequence of materials must exhibit the property of rundom-
ness, | These arc statistical problems, for the solution of shich the most
advanced statistical methods are necessary. At times, when operatlions
were found lacking statistical control, statistical analysis of the results of
routine tests -havo been used successfully to locate the source of the
unwanted va,rmti“:)ns. The application of statistical methods can protect
the consumer against the vagaries of sampling and safeguard the producer
from the losses ncurred by chances “unjust’” to him.

Me_teorology 18 & branch of applied physical science which has a
statistical basis, since weather forecasting utilizes statistical principles

2 Probabla error.
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and methods. The metcorologist collects data which are relatively
complex and which are the result of multiple factors operating together
without control. Henee, he has to apply methods of multivariate
analysis and also statistical mothods developed for dealing with serially
correlated data. It may be expected ithat, with the rapid development
of eleetronie caleulators, striking improvement will be made in solving
the problem of long-range weather forecasting. The great problem in
weathor forecagting at present is the lack of means to work out all the
mathematical variables within the period that knowledge of this kind is
useful. If valid predictions could be made of the weather long eneugh
in advance, it might even become possible to do something clbOllt the
weather.  Agrieulture, shipping, air travel, and other activitiesh would
benefit by advanced knowledge of the weather. The savifigs in lives,
crops, and money would be inealeulable.

In practically all branches of biology, methods of atatlstlcs are uged.
(Galton, influenced largely by the ideas of Darwim made quantitative
studies of biological variation. Much of the receds development in the
theory and application of statistics arose to medt’the need for improved
tools designed to handle problems in agrigulturdl and biological research.
There was a nced in these fields not onlfer interpreiing observational
data but also for planning experimentgicfficiently.

(ieneties is a branch of biologigal science which sceks to cxplain the
resemblances and the diITerenc(:sjithat gre displayed among organisms
related by deseent, Whereas the earlicr work in this ficld was chiefly
descriptive and empirical, the\development of theories based on Mendcl’s
discoveries has broughtstatistical methods to bear more and more on
the problems. In fact,“highly developed statistical methods now con-
stitute the basis of ;-ui important part of the subjeet.  The once conflicting
gclences of blomeﬁry and genetics are now closely integrated.

TPublie hea,lth “ecpidemiology, and vital records arc statistical in char-
acter. Tll\(,ol]ectlon and analysis of large masses of data are funda-
mental in, “hose fields. TFederal and state governments collect data for
‘mf()imaLwc snd divective purposes. The study of population changes
is€omewhat specinlized; its facts are the facts of life on which scientific
planhing for the futurc depends. Populations are recruited by birth
and depleted by death.? The balance between them and the change in
character of the age-group patterns of the population are subjeets requir-
ing careful and critical statisticsl analysis. Statistical methods are
increasing .in use in research in many branches of medicine, though
apparently the general practitioner has not been greatly affected by
statistical idess. Statistical methods are also fundamental n the
standardization of biological extracts. In biological assays, such as in

s Tmmigration has, of course, been an important factor in the United States,
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the calculation of the potency of penicillin, ingulin, digitalis, and other
drugs, the necessary precision could not be realized except by the use of
modern statistical procedures.

The psychologist, particularly in the fields of experimental and applied
psychology, needs a working knowledge of statistical methods. In a
quantitative inquiry into a psychological problem it is generally necessary
to measure a Kmited number of eases. In selecting them the psychologist
must be sure that they are effectively representative of the population
from which they arc drawn. Usually at least two samples, namely,
experimental and eontrol groups, are necessary in an experiment. « Lhese
must be so selected a8 to eliminate any bias of sclection with regpéet to
characteristics that are related to the investigation. TIn agdfition, the
problems of measurement involve the determination of the/reliahility
and validity of the instruments used. Tinally, analysing the experi-
mental date and drawing conclusions that the data ngefit are essentially
statistical procedures. &)

Applied psychology emphasizes the importagse of individual differ-
ences; it needs to develop tests for intelligenééy skills, and aptitudes of
various kinds. The allocation of individdals to places in society for
which they are best fitted requires tests\of mental and physical traits.
The statistical methods of multivarifife analysis arc essential for the
interpretation and use of sueh dagd® The future of human civilization
depends to a great extent on the edpacity of man to understand the factors
and forces governing or contrdlling his own behavior. In the solution of
these problems statistical fethod is likely to play a significant role.

Psychologists have developed from orthodox statistical methods some
variants of their owIt, ) The methods of factor analysis, for example, are
used to deseribe thediuman mind by means of 2 smali number of psycho-
logical factors. so

One of hé“‘*éarliest uses of the term statisties was the description, at
first VET‘b{ﬂ‘& d later numerieal, of outstanding characteristics of a state.
The _il;\t-i%}'pret-ation given in the first issue of the Journal af the Royal
S§ tstigal Society (Ref. 8) is: “Statistics may be said . . . to be the
fadseertainjng and bringing together of those facts which are caleulated to
llustrate the condition and prospects of society,”  Soeclul scicnce was
t-he_ parent of statistical method. A characteristic of the method of the
social scientist was the restriction of his observations to cireumstances
t}%at were not amenable to experimentation. Ience he usually dealt
with complex cases of multiple causation. The science of economics is
P@T'h&_PS the best example of this use of statistics.

Stat'iﬁl;:tt C()I;»:f.r gs c;g];vgs three reasons why economics is dependent on
' . 15 that economic laws, if they exist, pertain to
mass or group phenomena. The preferences, desires, and reactions of
millions of people are manifested in sconomic events. The so-called
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“law of supply and demand” applies very widely. The fundamental
assumption underlying the existence of sciences like economics {and
psychology) is that statistical laws aro deseriptive of human behavior.
A similar assumption underlies u rational approach to business and
political problems. The second reason for the dependence of economic
science on statistics is that only quantitative data, that ig, statistics, can
yield laws in the scientific sense. The third reason lies in the nature of
economic problems. Economic experiments are usnally not Teasible,
Ilence, if phenomena are to be observed und explained, the method of
study is cssentially statistical rather than experimental. It is notoften
possible to isolate one or a few factors for experimental study as is\done
by the experimentalist in his laboratory. O\

In economies research there are three general uses of stfStistics: they
may (1} serve as information culminating in hypotheses, a,igri’thcories, (2)
be applied to the testing of hypotheses or theories, and\3) furnish esti-
mates of quantitics in economic analysis. ‘

There has not been much cooperation betweatinphcoretical ceonomists
and statisticians. However, the development)of statistical methods
hus been notable in economics. The inereaging use of such quantitative
concepts as prices, income, and supply ahd demand may mean that the
approach of the statistician eventually’will provail over that of the
theorist. &Y '

We meet specific problems $0, which statistical analysis has heen
applied in telegraph and tfeleplione communication, in electric-power
distribution, in road and rs{l"traﬂic, and so on. The theory of probabil-
ity has been uscfully applied in the study of the effects of chance and
other factors in accidéhts. Tt has been noted that individuals differ in
their proneness to sl¥er accidents under given conditions.

Statistical fabtsand methods play a significant part in the develop-
ment of socioldey and education as sciences. The collection of statistios
il]ustl'a.tiva\@f the conditions of society has been mentioned as one of the
earliest adtivitics. Bach national census depicts our industrial, economic,
and S,szi'écl status at a given time. Bocial surveys are frequently con-
dueted in different parts of the country to find out the status of unem-
pluyi;nent, housing, the delinquency of youth, and go on. The method
of inquiry may be by sample, with its own special difficuliies and sources
of error.  Bociology stresses the interdependence of social facts and the
need of considering them in relation to each other. The comparative
method used at times applies the principle of varying the circumstances
of a phenomenon with a view to eliminating variable and unessential
factors. Thus it aims to arrive at what is indispensable and constant.
Its primary purpose is to make provision for classification of forms of
social relationships to facilitate causal analysis. Statistical investiga-
tions of crime, of the causes of suicide, and of the conditions under which
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certain economic organizations arige illustrate how the comparative

method has been applied. -
Fduecational statisties eollected by Federal, state, and local authorities

provide more and more the basiz for cducational policies and programs.
Subjects illustrative of the amenability of educational problems to
scientific study are: changes in the school population with respect to
age, intelligence, and other characteristics; means of providing cquality
of educational opportunities; the loeation of youth with special talents.
Likewise, numerous studies employing the experimental method, par-
ticularly thosc applying modern principles of experimental (_lcsig;n\, are
adding genuine knowledge concerning the educational process.

National opinion polls, such as those of Gallup, Crossley, afitl orfune
magazine, Use systematic methods of sampling. The develghfcht of Lhis
means of measuring publie opinion is likely to play a F:‘jg'};'lisf’i(‘-al,llt part in
the theory and practice of democratic government. ¢ \

Statistics is beginning to find application evemdu such nonscientifie
fiolds as the arts. In a task comparable to thatafdhe telephone cugineer
who tabulated the frequency of prineipal webds in order to secure the
best possible transmission, a literary scholar has tabulated the six
thousand most common words in English,WFrench, CGierman, and Spanish.
Some points of disputed authorship kave been deeided by the siatistical
study of the length of sentences. .jThé frequency with which colors and
sound patterns occur in poetryy Iﬁhe number of types of imagery used by
Shakespoure, the number of.different word classes characteristic of prose
and poetry of eertain pefiods—all these arc illustrations of stutistical
applications. EVidE%Q‘df errors in the chronology of carly Loman
history has been rayealed by cortain life tables. The authenticity of
paintings hag bee&x established by means of the frequency of brush marks.

The work ©f the mathematical statistician is fundamental n the
der-ﬂOpme:ﬂt.o\f statistical sclence. Here, as in other fields of science,
bagic l‘ﬁs@rch contributes general knowledge which affords the means
of S(_)}’V‘":ﬂg A }arge number of significant practical problems, althiongh a
specifie solution may not be provided to any onc problem. The role of
'?ﬁﬁe;t;?sii?\il lz to ‘11’809351“ Cﬂmplﬂt-e_ solutions to specific problems.
capital, from W];C%C Sp12V1 ed‘b).r basie r:esez}rch furnishes r%t'if_!l'lllflc-
Most [;f the mathemat.i?;fsh pr‘ctct-lcal 3?13!10&?410}15 must be ()}!ﬂlillleq.
the result of research of re e?g o St&tls{;ics - ltb‘: present Ch:l}‘“dfer s
have the theoretical adyan Cenb ecades. I@haps in no t 101(1. of science
of such advimces so pronosfls c;’,enrso sweeping and the practical 1'(\5}{“35
of theoretical problems wa, o Fl}e reason may b(? that the xohuion
urgent requirements of pra:t‘ljrlm&“]}' rendered indispensable l.)y .1_-1]0

ical research. Furthermore, the prineipal

contri 3 to t i i
l.llbUtOTh to the Solut%on of the theoretical problems discovered the
actual need for such solutions in their direct ¢

practical research ontact with the problems of
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There 1s usually a gap hetween theoretical developments and practice
in gcientific ficlds, and this gap is also characteristic of statistics. The
width of this gap varies in the several applicd fields, and there is even a
wide variation among workers within the same field with respect to the
quality of statistical methads used.

The rapid development of statistical seience has, of course, left many
problems unsolved, both theorctical and praciical. It may be expected
that theoretical studies of statistics will increase in the immediate future,
leading to greater rigor of its theoretical structure. As is characteristic
of all scientific subjoets, statistical science is never finished and complete:
it i3 dynpamie, developing always, The result will be more and“more
rigorous methods (Ref. 2}, This development is likely also to take n
areas and fields where new types of observational dats and ‘neiv kinds
of observations will be sought. Also, supplementary whthematical
researches will be found necessary before worlters in suehivields can carry
out, their studies with the high standards of comge?gence employed in
fields where statistical methods are firmly rootedN\® :

Mention should be made of the mechanizatipn of statistical caleula-
tions. The gencration of caleulators as user@eflogarithms and prepared
tables of mathematical functions and othemaids has becn succeeded by
one which knows only how to produce fighrés mechanically. Commercial
machines for aceounting and for scieﬁtiﬁc computation have done much
to bencfit business, government, a:nd science, It is not only in removing
the drudgery of reducing large wasscs of statistieal data that the mecha-
nization of statistics is 1mport4nt with the development of machines
based upon the principlessf clectronics rather than of the cogwhecl, the
most complicated an a’dvfmnced mathematical applications become prac-
tically solvable for dhe first time. The significance of this dcvelopment
for the solution, dP {heoretical as well as practical problems in scichee is
just beg:,mnm %o be realized. The iropetus given to this development
by the exigetieies of World War II was very great. No matter how
rapidly gma machine is produced, when finished it seems to be almost
obsolg te,, 80 swilt is progress. Thercfore, any description of the electronic
C&Lcul‘&tm which i3 givon here is likely to be soon superseded.

The clectronic numerical integrator and computor, the IEniac,
invented and perfected at the Moore Sehool of FEngineering of the Uni-
versity of Pennsylvania, does not have a single moving mechanical part.
Only the tiniest elements of matter—electrons~move within its 18,000
vacuum tubes and several miles of wiring. This amazing machine com-
pletes in two hours a mathematical task which 100 trained men could do
only in a year. Since all mathematical tasks, however abstruse or
involved, can be reduced to bagic arithmetic if ample time is provided,
this machine practically eliminates time to give the answors to virivally
any problem. That is, basically the machine does nothing more than
perform the fundamental arithmetic processes. This it does by the
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generation of very precisely timed electrical impulses. T.husc impulses
are formed at a speed of 100,000 per second, which ig equivalent to one
operation every twentieth impulse, thus adding, for instance, at the rate
of 5,000 per second. The Eniac has four kinds of memory. Onc of
these “minds” performs the task of indicating the initial and boundary
conditions of the problem. All problems must {irst be broken down into
their essentials, which are then punched on cards. These cards are then
run through a machine unit known as the “reader.” The reader acts
as the translator of the mathematical language to the language of the
machine, and vice versa. The values of certain scientific constanis are
introduced when required. The machine can handle mumbers\of 20
digits.

Machines have already been planncd to solve problems Unning into
400 stages, that is, machines which have a “memory” 23400 numbers.
Such a machine could solve 100,000 different equabionsfih approximately
one minute.* NS

The illustrative rather than exhaustive review thaf has just heen
presented has attempted to portray the realm)ef statistics all the way
from daily life through theoretical and applied science. 1f the purpose
has been achieved, the all-pervasive chardacter of statistics should be
realized. A knowledge of statistics—at leass of its logic and its depend-
ence on the data of experience—is indispensable to everyonc in the
practical affairs of human socigt-ji." Btatistical seience has likewise per-
vaded both the theoretical and applied aspects of the biological, physical,
and social seiences. In fagt,devery obscrvable event in the behavior of
marn, as well as in the b{h&é;vtlor of rocks and stars, is amenable to scientific
treatment and correlation with other events, In this analysis, statistical
methods have comg’{;o play a necessary part if such data arc to be assayed
with scientific pregision and if the relisbility of the information is to be
determined with objective validity.

The }:31\&]{8 of experience and the mortar of reason are the twin sup-
ports qun which the indestructible foundation of science iz built. The
es;sgmté of science is the rational ordering of the facts of experience. In
this)process the data of experience are represented by concepts. The
concepts are defined in 4 manner which facilitates the interpretation of
rational relation between expericnces.  Although the derivation of these
relations involves pure reasoning, statistical methods based on the theory
of probability contribute in the drawing of inference and conclugions by
specifying the degree of uncertainty involved.

Statistics in all its agpects is accordingly of interest and imporlanee
to & large number of classes of people. However, there are few if any
individuals, including professional statisticians, who can be experts in

+ 8ee the discussion of meterclogy, paga 1.
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all branches of statistics, because they would then need to be expert in
many branches of knowledge, including the foundations of statistieal
seience itsclf as well as the many {ields of application. Statistics is both
o science and an arf. Statistics is a science because ity methods are
basically systematic and of wide applieaiion. Statisties is an art because
guccess in its application is dependent on the skill, special experience, and
knowledge of the person using it in the field to which the application of
statistical methods is made. Buch gqualifications arc necessary becanse
the data colleeted in any {ield are the manifestations of persons or things
with which the statistician needs a first-hand acquaintance. ;
It iz, therefore, of importance that the author of any Lext in statistlva

N

methods make clear the purpose and gcope of his book. O\
"\
Stratisrics IN This Boox « M

The traditional and popular notion of the function offa'rst-atistician
is the collecling, tabulating, and describing of long réchrds of figures.
These records are convenicntly summarized by thesealoulation of aver-
ages, percentages, index numbers, and other degeriptive measures, and
by the construction of one or more of the kind§/of tables, graphs, dia-
grams, or charts. This process of reducing dlata to certain summary
values has been greatly aided by high-speethmachines for tabulation and
ealewlation. The collection of equpiiiie’ntal and other observational
data is, of course, an indispensablepart of the scienlist’s work. How-
ever, the function of a statisticiaiyas now recognized in many branches
of science, goes far beyond the ‘eollection and processing of numerical
data for descriptive purposds)  The less widely known activities include
his contributions to advamces in mathcmatical statistics basic to the
creation of tools of scieﬁtiﬁc value., These tools give precision to tests of
scientific hypothesigs™ They also indicate how observational studies
including experifents must be planned, whether under laboratory,
factory, or fislld.éonditions, to provide the most reliable and valid infor-
mation witli\the least expenditure of time, energy, and money.

The, eqﬁﬁha-sis of this book iIs on the interpretative rather than on the
descfiptive function of statistics. This book also aims to present the
theordfieal foundation of modern statistics, not as an end in itself buf
principally to provide the background for the intelligent application of
modern stafistical methods. The medium for developing an under-
standing of the theoretical foundation is primarily cmpirical and logical,
Supplerﬁnnt.ed at times by mathematical formulation. The complote
exposition of the mathematical theory of modern statistical methods is,
however, beyond the scope of this volume. Such information would be
of interest chiefly to mathematical statisticians, since a thor?ugh unc}er—-
standing of the theory of modern stalistical methods requires a fa.lrl-y
advanced knowledge of pure mathematics. Until recently, the basic
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regearches in the mathematical theory of statisties wore rather widely
dispersed among scientific journals, but books dealing prineipally with
the mathemaiical thearetical foundation of modern statistics are now
available (Refs. 1, 3, 4, and 7). Thus, although from the mathematical
standpoint this book is not self-contained, it is written for readers without
specialized mathematical training.

The theorctical presentation in this book has been hased, as it must

‘be for present-day needs, on original and sccondary sources of mathe-
'matical statistics. It is assumed that certuin aspeets of this theoretical
background must be clearly understood if statistical methods are to be
put to ntelligent use. One basic conception is that one must khow how
to choose the most effective statistical tool for the purposc, mymind. A
second is that one must know the basic assumptions adeflying the
statistical tool selected. A third basic conception is ph‘gt“one mugt firsgt
test to see if the assumptions are fulfilled by the paxbicular situation to
which the tool is to be applied. By continuoqs.femphasis in this text
upon these requisites, it is proposed that the user ‘of statistical methods
will become habituated to the practice of critidal examination and selee-
tion rather than to applying statistical niéﬁhods blindly or in a rule-of-
thumb manner. P\%

Let us rcpeat: statistical method 18" based on the same fundamental
idess and processcs as is the general scientific method. Thinking
statistically ig equivalent to tliiﬁking scientifically. This kinship under-
lies the development of the principles of statistical methodology. The
more complete understaiding of scientific methods is a dircet aim in the
presentation of thi t{it Reasoning skepticism, seientific caution, and
COTNMON SENSe arejl}gently needed in statisties.

The more siglificant, contributions to statistics gince the early 1920°s
have bacn ma@e} fn the development of the foundations for the problem of
statistica-:l‘jrﬁerence. The principles of statistical inference deal with
two C}Jief"f)roblems: that of testing statistical hypotheses and that of
statifi’gical cstimation, These, then, are the two fundamental statistical

mpr’ublems of the rescarch worker, The presentation of the thogretical
dspects of these two problems, with special emphasis on their practical
aspects, eonstitutes the principal content of this book, which has been
arranged with the view of presenting the main idess underlying statistical
inference in a logical developmental order leading to a functional under-
standing of the principles.
) Thff concepts underlying probability and likelihood as they are used
in statistics are given first, sinee probability theory plays the primary
role in statistical inference. The fundamental theorems of direct prob-
ability follow. We proceed with other theorems which, in turn, lead 0
the classical bi'nomial, normal, and Poisson distributions. :
We then discuss the development of saumpling theory and its use in
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problems of statistical inference. The selection of representative samples
reeeives considerable emphasis in keeping with the requirements of
present-day roscarch.

This background should prepare the student to understand the testing
of gtatistical hypotheses. Many illustrations of current procedures of
testing statistical hypothoses are presented. The problem of estimating
parameters from sample values is then treated. The following are
considercd: the properties of “best” estimates; the form of the frequency
distribution of observational values in relation to the most accurate
estimates; and two methods of forming estimates—the method of maxic
mum likelihood and the method of interval estimation. Many originil
practical problems are worked out by way of illustration. O

The interpretative function in statistical analysis has been idntioned
as one of major concern. The fact is, however, that the imterpretation
of a body of data requires a knowledge of how it was 0i:>,t-a§iﬁcd. It is of
equal importance that conclusions drawn from obsexyabional results he
based on detailed knowledge of the procedures employed in the investiga-
tion. Thus, the major fanction of a statistician dg%é design experiments
and to plan investigations which will yicld pgaimum information and
valid conclusions. This responsibility of\'s/ statistician is stressed
throughout. o\ ¢

Congiderable spaece has been allot-t;ajf}” %0 the technique of the analysis
of variance, the most powerful stagistical tool yet devised for analyzing
sources of variation. Modern expérimental and sampling designs require
this technigue for the a-na,lysis:uf their results. Related problems such
as those in regression arelse/ncluded.

A thorough understan\(ﬁng of the problems of the field in which one
works s essential wher'statistical data from this field are 1o be collected
apd analyzed. Tof Ii};avclop statistical craftsmanghip, one must acquire
skill by observati:cﬁ and much practice. The aim of this book iy to assist
students andardsearch workers who require technical aid in the design,
execution,«ahd interpretation of quantitative researches which may
origina.tg'}:il' :Ghﬁ laboratory or in the field. This book is designed just as
wmuck th help a student to become a competent critic of the research
literature in his field.

The content of this toxt is based largely on the theory and application
of those statistical methods which are of general importance. The same
formula is applicable to diverse groups of subject matter, as is true of
othor branches of mathematics. The specialized uses of statisties
involve no great alteration of structure; rather, the specialization (:onsis.ts
in the way in which statisties is applied. No attempt ha-s. becn ma.de_ n
this book to present illustrations from the many varied fields to which
statistical methods can be usefully applied. The student should become
competent to deal with many analogous problems through a study of the
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statistival processes illustrated in the examples. He is, therefore, invited
to work through the numerous examples in all numerical detail, so that
he may learn how to apply the same methods not only to the unsolved
problems given in the text but also to those encountered in his readings
and, above all, in his own rescarch.

Much care has been given to the practical arrangements of numerical
ealeulations. The analysis of the resultz obtained from modern and
original experimental designs has been given special attention.
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CHATTER 11
PROBABILITY AND LIKELIHOOD

The work of a scientist iz in part practical: he designs experiments
and makes obgervations. Another part of his labor is theoretical: he
formulates conclusions from his experimental findings, compares his
results with those of other workers, constructs a theorctical systera&o as
to represent and order the facts of observation as accurately ag possible,
or notes their conformation to existing theory. With the aid of$liétheory
he derives predietions, which he again validates by new ohgervations.

The Basis of Statistical Inference. In most, if pét ull, of these
activities of the modern scientific worker, statisticaldihcthods play a
significant part. 1f the experiment or investigatiptiGd to lead o explicit,
uneguivocal, and convincing results, it must be glanned ro that the data
are capable of clear-cut statistical interprefafigh.” The testing of under-
lying assumptions, the drawing of inferewes from gample to population
ot from observation to hypothesis, and the derivation of predictions are
all baged upon intelligent statistical anblyiis.

One of the most hazardous actg'of the research worker is the drawing
of inferences or conclusgions frong ;é'xi)erimenta.l data. This act iz a proc-
ess of reasoning from the pamt\te the whole, from sample to population,
from the particular to t}p?general, or from effect to cause. This step
is difficult, it scems, bechisethe experimental results pertaln to the experi-
ment or sample, whebeas the inference or conclusion refers to the popu-
lation, of which théAxperiment or sample is only a very small part.

The inferel}n\és' drawn from sample to population are uncertain.
Even so, thegévintferences can be rigoreus, because they may be made so
as to inclyde within themselves a quantitative specification of the kind
and amount of uncertainty involved. Upon this achievement depends
thoadlidity of the process of acquiring new knowledge by observation or
exber?ment-. Seience can progress by collecting new experiences ag well
as by the betfer ordering of those already possossed. It is primarily by
the formor process that new knowledge comes into being.

The statisticlan’s contribution to the problem of drawing conelusions
from experimental results consists in {a) setting up the requirements for
the design or the logical structure of the experiment and (b) interpreting
the data. While these two aspects of the process of adding to scientific
knowledge are closely related, our principal concern for the present iz to
consider the general problem of statistical inference.  As has been noted
in Chapter I, there are fwo chief problems of statistical inference: thag

17
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of testing statistical hypotheses and that of cstimation. Preliminary
to the direct consideration of these problems, it is desirable to develop
gome fundamental ideas and theorems, which have their origin in prob-
ability theory. The interpretation of experimental data is based on the
application of probability theory. This theory is planned to provide the
mathematical model of the empirical {acts, that is, the data with which
the statistician works.

Setting up a Model. In looking for a solid theoretical foundation
upen which to build a medel, the statistician must make clear just how
far the concepts which he uses are justified and are requisites, The
justification of the logical system he develops rests upon the demonsira-
tion of its usefulness in describing the results of experience. ¢ \Phe events
and objects of the world of reality are always very, cﬁmplex. The
scientifically trained mind is required to identily theNédllaructeristic or
salient point from among the vast number present #&%h essontial condi-
tion from the standpoint of theory. Because th’e’:objeets of the world
of reality cannot be comprehended in a way that could lead to an exact
theory, they are superseded by idealized cgnt‘%‘ptions which can be coms?
prehended with comparative ease. The~dbject of creating theoretical
models is to permit the mental roconstiuetion of the world of empirical
fact. This statement is not equivalent to saying that the theory necessi-
tates putting the empirical facts into'an inflexible predetermined scheme.
On the contrary, the theoreticalisystem must be constructed so that the
facts are truthfully represemted. A scientific theory may be abstract
not only in that it cncloses)a collection of selective facts buf also in that it
covers a set of ideal¢ ﬁﬁects, such as wave function in physics and the
plane in geometryn Yet when such theories encompass real objects
to close approximiations, they may serve a useful purpose. The statis-
tician begins hi§ work in developing cfficient, working tools for the rescarch
worker bﬁ)(@ijding a simplificd model by which he proposes to represent
the phm\}g €na of observation with reliability sufficient to supply uscful
results.

.. Statistical Interpretation of Probability. The principal function of
Stabistics is to deseribe certain characteristics of mass phenomena
and repetitive events. From the theoretical point of view, unlimited
sequences of events.or of similar observations are referred to as stafistical
untverses or populations or collectives. Much of theoretival statistics is
bm}t up around the ides of an infinitely large hypothotical population of
which the observational data make up a sample. The idea of an infinite
parent population from which samples are taken is a mathematical
?Lbstraction. Populations with which we deal in practice are finite. ‘Lhe
lnﬁnite population may be considered ag a limiting case of a (inite popu-
lation when the number of individuals increases indefinitely.  In experi-
mental work, also, & hypothetical infinite population may be considered
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as an infinite population of all experiments that might have been carricd
out under the conditions of an obsorved experiment. The individual
experiment iz interpreted as a random selection from the infinite popula-
{lon so defined.

A population is an aggregate of individuals. The individual case
is of inferest to the statistician chiefly beeausc it is from the collection of
individuals that the characterization of the population becomes possible.
Even if the interest were in the individual case, information would need
to he collected for thousands of individuals, and perhaps no other eventual
use of them would be made besides combining them under a single sta-
tistical generalization. Although in this treatment the identity of\any
partieular individual is irretrievably lost in the aggregate, it dods not
follow that we cannot say anything about the individual from the
knowledge we have of the population. Take, for instancey the frequency
distribution of the ages of the 24,395 high- school gmdtmtes as recorded
in Tahle 45, page 202.  Let us take a single mdlwdual‘from the group or
population of 24,385, Fven though we do not kngw his age, we know
that he will be an exceptional individual with)wéspect to age if he is
of less than, say, sixtecn yvears. It can be.8aid that he will beone of
84/24,395ths of the group. He will, of cotirre, more likely be one of the
12,148/24,395ths of the group. Tt is moke.fonvenient, when dealing with
problems of this type, to use aterm (‘ommonly eallod odds or probability.
In the iltustration just cited, it can bu said that the odds or probability of
any one individual’s heing 1(“-5 thcm sixteen years at Lthe date of graduation
from high school is 84,/24,395 &\.0034, and the probability of his age being
eightoen is 12,148/24,3 "“-’ 498, This interpretation of probability
i3 the one wsually aceepteddin modern statisties; Lhat is, probability is the
ratio of frequencies.»As in this illustration, so in any frequency distri-
bution: statistical Probability may be considered as the means by which
the (hdractelié,j‘iqé“of the whole distribution may be ascribed to the
random mdj‘\%lual

The Ipn —standing controversy over the nature and meaning of
probabﬂty ‘need nof detain us here.  We may merely mention that the

Py LII[ﬂ(}glCElI and subjective interpretation should be kept distinet from
the JObjective or operational inferprefation of relative frequencies.
Probability is sssociated with our subjective sense of expectaney just as
a thormometer reading is linked with our subjective sense of heat and
cold. The evaluation of probabiliiies from given data on the basis of
standard caleulations of secondary from primary probabilities ig objective
in the sense that this manner of derivation is acceptable to most modern
statisticians.

Two delinitions of probability may be cited here. {1} Von Mises
{Ref. 3) defines the probability of an cvent as the limit of the relative
frequency of this event in an inflinite sequence of frials, the Kollekiir,
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fulfilling certain specified conditions. In a purely mathematical sense,
the existenee of this limit is assumed to be axiomatic. {2) Kolmogoroff
(Ref. 2) gives the most comprehensive discussion of prebability from the
standpoint of meagure, He defines probability as a set function which
fulfills a certain system of axioms. This theory starts with the concopt
of the frequency ratio but does not postulate that definite limits of
frequeney ratios exist. It builds around ihe concept of a random vari-
able, that is, by considering the prebability of an event as a number
connected with the event.  The axioms postulated in the theory express
the principles for operating with the numbers. With respect tofapplica-
tion, the two theories are largely equivalent. However, the limiting
propertieg of frequencies involved in definition (1), rathep{han the pure
mathematics of abstract ensembles occurring in definition (2), will be
accepted as the basis of the frequency theory of prokability insofar as it
ig used in our present discussion. \

Thus, the truc probability, Piz, of gettinguadouble 6, or sum 12, in
one throw of two dice is defined as lim n—wg‘a‘gt‘lming that the limit exists,

where 713 15 the number of times a sporémf 12 18 obtained in n throws
of the two dice. Similarly, probahility values can be determined for
each of the other possible totalsod0n a priori grounds, a tentative or
hypothetical probability cou]d"b'e assigned to the irue probability.
However, probability in the sense used here in statistics depends for jts
meaning on aggregatos of, phenomena or ropeated events. Although
the value of Py, for instance, can never be reached in practice, it can be
attained within an ?J?k\ftmry degree of certainty by making n sufficiently
large. According%d a theorem by James Bernoulli, the probability that

. \ X Ny, . .
the relative fr\eguency f will be adjacent to P14 is arbitrarily near to 1

for a sufiiéiently long sequenee of trials.
EX.A\]I'LE Y. An FExperiment in Probability. We shall illustrate
SO, of the main points in probability theory by eonsidering an experi-
/ent consisting of the throws of a pair of dice. This experiment was
repeated a large number of times. The sequence of throws of the pair
of dice gives rise to a sequence of numbers, the variable consisting of the
sums of the several combinations of the two sets of dots on the two upper
faces of the dice after each throw, that is, 2, . ..,12. The conditions
of each throw were kept as uniform as possible. The systematic record
of the results of sequences of this kind constitutes a set of statistical data
relative to the events observed. Six sets of data, resulting from 36, 360,
3,600, 36,000, 180,000, and 360,000 throws, are recorded in Table 1.
The data are arranged in frequency distributions which show the number
and per cent of occurrences for each of eloven possible events, 2, . . ., 12.
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The hypothetical or theoretical distribution arrived at on o priovi gronnds
is also recorded in the first main column.

The probability of getting a 12 in the throw of fwo dice shows some
fluctuation in the six scries of experiments, ranging in value from 028 to
083, A similar situation holds for each of the other totals.  The true

. . " - Q-
probabilify of getting a 12, im fr though never reached in practice, can
n—r e

be approached closer and closer by inecreasing the size of n. On thig
basis, the value .029 determined by 360,000 throws would give the hest
approximation; likewise for the other totals. In this wuy pdhability
statements arc based on the results of empirical investigationg.

The crratie or haphazard behavior of the fluctuations .(if‘l?l?{t variable
from throw to throw is usually spoken of as randemness, Miven with the
utmost care in keeping all relevant fuctors unclcr"'éfiﬁ‘tml, the results
vary from obscrvation to observation in such an i{@gill;'L.l- way that exact
prediction of any single event is impossible. The sequence may, there-
fore, be called & seguence of random experimends. It is noted, however,
that, in spitc of the unpredictable behaaior of individusl results, the
average results of long sequences of {he'wandom experiments exhibit &
striking regularity; this regularity may be inferred from the similarities
among the several percentage frg@icncy distributions, 1f is this phe-
nomenon that serves as the basigfer the mathematical theory of statistics.

The hypothetical value of Brobabilities may at times be very useful in
furnishing clues to true prObabilities.

We may use the th@ﬁ%ﬁcal values of P to determine the mathematical
expectation, a concept that will be encountered later in sampling theory.
tI‘he mathematiqz}l :(}xpectation of any quantity is the sum of all the values
it may assumg, ,Fnultip]ied by their respective probabilities:

.‘\ Nos
\OF) =PXa+ PoXe 4 -0 4 P, X = Y 1Y, (200
iy

#
2 8
i

F:O'r\;niﬂa.(?,_()l) shows that the mathematical expectation is the weighted
\”1;;1;1{3 metic mean of a variable where the different, probability values, £i's,

mvi(.ie t.he weights. The mathematjcal expectation of the throws of
two dice is given by:

BX) = (3‘1?)2 + (&F6)3 + 4+ (05 +
G0+ @7+ (498 + (o9 + |- (202
F10 + Gl 4 ()12 = 7
Summary., In the interpret,

' ation of prohability statements on the
basis of relative frequencios, the o o

Tollowing points are essentinl {(Ref. 4):
(1) lfle pl:Obablhtf" of an event, has meanine onl ¥ when the individual
ovent 15 an element of the specified reference elass.
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(2) The objective values involved in probability statements grow
out of their determination through empirical investigations.

(3) Binee probability reluates to the property of an objeet in a specified
reference class, a given property can be associated with various
degroes of probability referred to diffevent reference classes.

(4) Tho direct cvidence for probability statements is statistical in
character, sinee the definition of such statements is explicitly
stated in terms of relative frequencies. There are, however,
cases where indivect evidence provides estimates of the probabili-
ties and validation of them: for example, when probability state-
ments are & part of & gystem of statements.

(6} Every probability statement defined as the lmit of 2 Golative
frequency is a hypothesis which is incapable of complattg’bon’ﬁrmn-
tion or final verification by means of the finite ev 1de,13,( e available
at any specified time.

(6} Probability statements to be used succe%fulh«‘for specifying the
occurrence of designated propertics in definife ¢lasses with stable
relatwe fr equenuefs are not dependent LLPDn ‘deterministie” or

“indeterministic” issues, ™

Fundamental Theorems of Direct Pmb:aﬁﬂ.i’cy. The function of the
calculus of probability is to derive probabilities of compound events from
gets of initially given probabilities. ,.f[fhlis, in the example of dice casting,
given above, the probability of thfrfming a 6 with a die Is not & problem
in the caleulus of probability; ag, given this probability, the probability
of getting 12 in the throwing: of two dice Is such a problem. Tt should be
recognized that the props@tlom asserted in the ealeulus are only analytic
of the definitions and rales originally specified, as in the case of demonstras~
tive geometry, for{Anstance. The probability calenlus thus makes
possible the derij«x{it,lbn of relative frequencics with which certain events
ocour from the'fmtial probability statements without the specifieation in
the statements of what the actual frequencies are. In thus making
definite the predictions which the probability statements involve, the
calculus “enables s to make the check of statement content. In this
wecﬁgn’ a few of the standard rules vegulating the ecalculus of direct
probabilities will be given. Most of the seience of statistics 1s built upon
the explicit or implicit application of these fundamental rules (Refs. 1
and 4).

It is assumed, to begin with, that probability is measurable on a
continuous seale. Thus, a probability is a real number, and any two
measures of probabilities are comparable, that ig, Py > Py, Py = Py, or
Py <Py

The probability of a proposition A on data R is written

P{AIR}
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Thus, we may state as

Bule 1. If R entails 4, P{AlR) = 1
1f B entails not—A, P(A|R) = 0

Thus, if an event is certain to happen, its probability is 1; if it is
certain not to happen, it probability is 0.  The range on the probability
seale 18 from 0 fo 1. Any value between these limits is, therelore, a
positive proper fraction,

Rule 2. 1f Py, Py, ..., P, arc the probabilities of n mutually
exclusive propositions A4, As, . . ., 4, on data &, then the probability
that one of the propositions s true is P + Py + + = -+ P,.. Symbélically:

Pidior Agor » + + AR} = Pi{A1|R} + Po{4.R) O\
+ v O Pul{Ad|RY

Thus, if one hall be drawn from a bag _-::ontainin'ghf"our white, five
blacl, and seven red balls, since the chance of its being white is § and of
its being black is %, the probability of its being either white or black
s 5. \
Rule 8. The probability of two prop 51%1%133 A and B on data £ i8
the product of the probability of A given® and that of B given A and A.
Symbolically, e,

P{AB|R} = B(’A[R)P(B!AR)
Morc generally, RN

P(4:dy + - AdR) = P(AJRP(AJAR)P(A]A,4:R) - - -
o\ P(flkl.('ik_l L 111}1);)

Thus, the probability ﬁdrawing a second white ball from a bag contain-
ing five white and/Aqur black balls, the ball first drawn being returned
before the seconddrawing, is § X §, or 2%.

The proba,]éility of becoming a total orphan is the product of the
probabilitiemdf heing bereaved of father and of mother.

Tl}e;i'h es for the logieal sum of events (Rule 2) and for the logical
product’ (Rule 3) arc basic in the elementary caleulus of probability.
From' them, by the application of the ordinary rules of logic and arith-

Aic, it becomes possible to derive significant, consequences. One such
derivation is Bayes's theorem, which, from the consequences drawn from
it, often plays a conspicuous part in treatments of the foundations of
probability and scientific method. Symbolically, it may be stated as

P{A|RH} o P(AH)P(R|AH)
Th‘a.t- is, the probability of A,, given R and IT ; Is proportional to the prob-
a,!orllty of 4, given 17, multiplied by the probability of R, given 4; and f.
The factor on the left, that is, P{A4,/RIT}, is called the posterior probabil-

ity; t‘lnc.,- first factor on the right, P(A.//), the prior probability; and the
remauning factor, P(£|A;H), the likelihood.
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In order to make any practical use of Bayes's theorem, it is necessary
to decide on the values to be ascribed to the prior probabilities. Bayes
and Laplace postulated that, in the abscnee of definite knowledge, the
an{ecedent probabilities were assumed to be equal. This postulate has
been relentlessly attacked, especially in recent years, by statisticiang on
the grounds of supplying by hypothesis data unavailable through empir-
ical or, more particularly, statistical Investigations,

The Principle of Maximum Likelihood. Since in most cases it is
practically impossible to assign values of empirical significance to the
a priori probabilities in Bayes's theorem, the theorem has only a ]_im.’kted
usa, Therefore, it plays a very minor role 45 2 means for determining the
probability of a given hypothesis on the grounds of the available évidence.

Statisticians who rejeet Bayes’s postulate supplant it witli'g different
principle based on the use of likelibood. That is, for anyg e and H,

P{AJRIT} & P(AIDL(RIAH), ¢ 0o,

where the factor L(R|4:H) stands for the likelihggd unetion.

The principle of maximum likeliheod stateg.@.a‘t, when the problem of
choosing from a number of hypotheses, A, ar¥ck; wo arc to choose the one
(assuming 7t exists) that maximizes L{Z{AHK}. That is, we are to select
the hypothesis which gives the maxi;glini probability of the observed
event. JON

Other Theorems in the Calculpisf of Probability. The previous rules
governing direct probability caleulations are based on the assuraption
that the relative frequency Qf 3 proposition referred to a speeified elass
of objects or events has adimit. There ave other theorems in the calculus
which require the fulfjﬂh}ent of additional assumptions. One of these
is that the condition.of drregularity obtains in the reference classes.  This
condition is knowneas a random character. It may be spoken of here
as 1 mothod of Belection which affords an equal probability to certain
pl'oposit.ionﬁn’d thus permits the application of the caleulus probability
a priorl 3N

TheNrregular Kollektiv, by which is meant an infinite sequence of
obgeryutions, is the foundation of the mathematical theory of probability
advificed by von Mises. The condition of randomness, or impossibility
of a gambling system, which the Kollektiv must satisfy, means that if the
relative frequency of some particular attribute is calculated in a subse-
quence of the Kollekts, selected by some method which is independent
of the Kollekiip itself, i must tend to the same limit as it does in the
original Kollekiiv. Randomness iz fundamentsl in the theory of sam-
pling to be discussed later, since ihe theory deals principally with samples
generated by such processes,

The Binomial Distribution. For reference classes gatisfying the con-
dition of random character, the following can be shown: If the probability

~
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of having a specificd property, say S, called “success” is p, and the prob-
ability of not having it is ¢ = 1 — p, then the numerical value of the
probability that exactly { elements in a sct (where ¢ £ n) have the
property S while the remaining » — ¢ elements do not have S is given by

| L =012 -+ -, n;
P.i= 1—?2"_{,' plg=t|p = p(S) = constant (2.03)
tin — 0! for group of trjals

This important theorcm is termed the binomial law. [P, ;s the goneral
term in the binomial expansion of N\

(¢ + p)* \' \\
The maximum value of P, where p and n arc fixedy Viries with £
This maximum value is given when { satisfies the condifioﬁ'
&
A p>t>pntp— 00O (2.09)
When # is very large, the value for which #,gives a maximum may be
taken as pn. This value indieates that thie Probability of sets with »
sueccssive elements which contain exactlinMelements with the proporty 8
is largest when ¢ is approximately equal £o pn, or that the proportion of
S’s in a set of n elements is approxim#tely equal to the limit of the rela-
tive frequency of S in the Kollehif™
Equation (2.03) is a speciaf’éa.se of a more general theorem dealing
with situations in which noflonly two results are considered but, in which
the event may oceur in @{x‘-’a&s with probabilities p1, ps, . . . , pi.  Then,
for a random sample of AMrom s multinomial distribution, it can be shown
that the probabilityy Ps of N giving n1 of the first kind, 2 of the sccond,
., m of the last! is
N
O N
O P - (2.05)

ml el Lo !

Whiﬂ?ﬁ the general term in the multinomial expansion of
\ 3
(pl+p2+"'—[—pk)‘v; N=n1+n2+...+nk
The Poisson Distribution. An important distribution of the dis-
continuous type which often describes the facts of obgervations is one
whero p, or the probability of an event, is very small, but where a large
Pumber of casos or trials, n, are taken so that pr is finite but small.
The number of oceurrences will be distributed in the Poisson series.
Thus,
p—0 7~ o

g—1 np remains {inite = 4 = mean
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it ean be shown that, for the Poisson distribution,

Mean = m
Variance = npg — m

The distribution is therefore determined by one parameter,
If t=0,1,2 ..., the relalive frequency with which the values
oeeur is given by the series

- men r‘zg'--m L mxe—m
e TE R ST (2.06)
¢ =0, i, 2, - & O

Thiz series is known as “‘Poisson’s limit 1o the binomial,” “ phe)Poisson
gerics,” or “the law of small numbers”” Probability tqiﬁes’ for the
dl‘*l[‘lbllfl()l’l are given by Poarson (Ref. 3). “

The Normal Distribution. The binomial law basm m Lhe theory of
probability is exact, but it possesses the distinet dJ'sa?dv&ntage of involv-
ing much labor, particularly in the computatign\st the factorisls that
enter in the term P, [see (2.03)] when n is Jadgé. Furthermore, it is a
theoretical distribution of the discontinupusor’the discrete form. When
the character is continuous, as Is very ofteéw the case in measurcments in
science, » curve Is essential in desceribiugsuch continuous variation.

It can be shown that by a scries, of approximations an analytic formula
can be obtained from Lquatwn. (2.0‘3) which takes the form

&2
P F" ¢ I where 6§ = £ — np (2.07)
, 2\ bV 2T = \/5@

and the graph of Paya function of 8 is a symmetrical, bell-shaped curve
variously called{lid normal distribution curve, the Guaussian curve, or
the Ldpldnﬂn'&aussnn error curve, Sinee the maximum value of the
exponentialie = for & > 0, is unity, it is noted that the normal appmzimq-
tion for «1% probability that ¢ will assume its most probable value is

givest ’by 1_: ot in terms of the binomial parameters, N, where

NV a2 \/ TPy
g 21 — p. Itisobvious that the normal approximation gives the closest
fit to the binomial whon p = ¢ (sce page 58). .

In addition to the normal curve being the limiting form of the binomial
distribution, as well as of certain other distribufions, its usefulness in
theory and praectice is espocially enhanced by the central limit theorem.
According to this theorem, under certain conditions the sum of n inde-
pendent random variables, in whatever form they may be distributed,
tends to be distributed, when expressed in standard mcasure, as the
normal distribution when # — =. Another important property of the
normal distribution is its reproductive property. For example, a linear
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function of variates that are normally distributed is itself normally
distributed.

One of the earliest applications of probability was to the systematiza-
tion of measurcments and observations in the physical sciences, parlicu-
larly astronomy. Legendre in 1806 had formulated what has become
known as the principle of least squares: When a set of empirical observa-
tions is usced to establish the constants of a mathematical funciion, the
best solution is that which reduces the sums of the squares of the residual
errors to a minimum. This principle was later placed on o definite
mathematical and logical basis by the work of Gauss, Laplace, Magwell,
and others. That i, the normal curve, although previously T'L;n'muluted
by de Moivre, was developed as a useful mathematical topk NSince it
was used by Gauss to describe the distribution of “‘errors,”Qb Was spoken
of as the “normal curve of error.”” The distribution cuy\cizis useful, how-
ever, in many situations which have nothing to do wih “errors,” us in
the original setting in which it was used. Tt iscueful in dealing with
variations of different kinds, especially with ederimental and other
obscrvational results, as in the biological scientes.

Berious altempts were made, particu]a,lf‘i}v’ by Quetelet, to apply the
theory of probability to social statistics?™\‘He popularized she iden of the
“average man” as computed from extensive statisties which he collected.
1t was through analogy of the apéiﬁge man to the center of gravity in
mechanics that he assumed humdnactions or traits as occurring in accord-
ance with the operation of.aws giving rise to a normal distribulion.
Unfortunately, this attemiph, although the influence of Quetelet soon
beeame very slight, e@néd to have cstablished the use of the term
“normal” in conngetion with a law of distribution presuming that
measurements should always be expected to follow the “normal law of
errors™ ag if it x-'u:'@re a law of nature. Though later developments have
shown ‘thafg.j‘ll\scieme the normal curve gives at times a very close
approximatieh to the observed facls, these instances of very close
approxi;;fna ions are the exception rather than the rule. ‘

. In dealing with the distributions of crrors of measurement or obgerva-
thD{," tlhe normal law of error was derived under the assumption Lhat
deﬂatlons.from tht? most probable value are fortuitious, meuning that
the forces in operation to produce them could not be resolved into more
elcmerftfml factors. _It was assumed that the deviations were ag likely to
be positive as negative, and that they varied without limit, that is, within
z}gialijszgiiotfheir: .oti:?i&p]acfe,s generalization was thz.l.t the r_Ii.-,-f'.ril;)utiolll
represented by t-hepfunlczin 0 igreat numher of 1(‘le.11tlca.l aljternz.l.m-'cs is
curve decrease on both sio{? ¢ f, such tha-.l,t the ord?natcs.ot the normal
that their logarithms are o the maximum ordinate in Sm:}% b ey
from the center. Eatend: pl'Op‘or’mona,l to tho suarcs of the distances

T.  Hxtending this idea to fluctuations orher than so-called
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“error,” it may be said that, if an observation, say z, is a resultant of the
sum of the effects of a large number of smull causes operating at random,
and if each effect is indepondent of %, the obtained distribution is expected
Lo be normal.

The normal distribution holds a central place in the theory of sampling
as well as in the theory of probability.

ProBLEMS

Exercises 1-9 are based on the assumption of a normally distributed
population. ~

1. What proportion of the total number of cases lies between one and
two standard deviations (8.1.) above the mean? R\,

2. What ig the prebability of obtaining a value of the ,viax\lat,e in ran-
dom selection at least as large as +1,96 S.D.7 N

3. What proportion of the area under the normal’énrve lies between
1.278.D.and 1.338.D.7 Tics above 1.3 8.D.2:\ids above —1.38.D.7
Ies below 2.1 8.1D.2 \

4. What is the probability that a measure'vqih‘ Tie in the range 2.5 8.D.
to 3.1 8.D.? o\

5. What is the probability of obtaining™aY absclute value of z/¢ groater
than 1.5% N

6. What is the relative length ofythe ordinate cutting off the lowest
12.1 per cent of the area? &

7. A variate is normally distzibuted with mean 13.5 and 8.D. 3.6. (a)
What measures sel ectad(ai random might be expecled to oceur in not
maore than 5 per co ’<0f ‘the cages? in not more than 1 per cont of the
cases? (b) WHhha 13 the probability of obtaining a vahieof 157  of 87

8. A variable iszmormally distributed with unit standard deviation.
The probabi]:lt\y of obfaining a value of 15 or greater from the popu-
lation ig, ..{f;’b. What is the mathematical expectation of the means of
rando@m’mplcs ?

9. A p@i)ulation has 2 mean of 37.6. It iz found that 95 per cent of the
valiles of the variate lie In the range 27.8 to 47.4.  What values of

“Yhe variate will ocenr with a probability of .01 or less?

10." Inzofar as the theory of statisties is concerned, upon what doeg the
¢oncept of probabilily depend for its meaning?

11, In rolling a die, the variable X takes on values 1, 2, 8, 4, 5, and 6.
Tt the die is unbiased, show that E{X) is 3.5, E{X?) is 15.167, and
the standard deviation of X iz 1.708.

12. Tn theo classical example of the Poisson distribution given by DBort-
kiewicz, the records of 20 army corps over a period of 10 years
furnish 200 obzervations of the number of men killed by the kick of a
horse. If the number of deaths is denoted by the variable X, which
takes the values 0, 1, 2, 3, and 4 with frequencies 109, 65, 22, 3, and 1,
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show that the mean is approximately equal to the variance.  I'ind the
theoretical frequencies.

13. Calculate the frequency of girls in 100 families of 3 children cach;
p = .49

14. I'ind the number of different committees, cach of 3 persons, that can
be selected from 5 individuals.
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CHAPTER I11I
SAMPLING DISTRIBUTIONS

If the tools designed by the mathematical statistician are to be used
intelligently and efficiently by the rescarch worker, the former cannot
evade the responsibility of setting forth clearly and unequivocally, the
conditions under which the use of each tool is valid and efficient. “§Where
the statistician has done his part, it is the responsibility of the\:resea.rch
worker to determine whether the necessary conditions ob‘mm in his
particular case. It should be pointed out that other tools, are generally
required to tost whetber or not these conditions hold goo& The com-
mand of these tools is an indispensable part of the*rescarcher’s art.
Once it has been established that the assumptiong\itave been fulfilled, he
can proceed with confidence in the results. AN

8o that the student may gain an insight ind6 the logic and reasoning
underlying the problems of drawing valig, tonclusions from experimental
results, we present a number of ¢ ommonly ‘used models developed by the
statistician for such purposes. It sh@)uhl be emphasized that the ability
to distinguish the specific use org wsts for each of the models will go a
long way toward developing thet iind of statistical craftsmanship essential
in the modern regearch workar:

Preliminary Notiong dn)Sampling and Inference. ‘The material out
of which the btatmucmn\ﬁnqtl ructs his model for practieal use in interpret-
ing experimental refults is discovered by noting what happens when
sample after sample/is taken from the same population. It is noted, of
course, that the\(“m]tb usnally differ from one sample to another.  Since
the methodaf kelection is kept uniform throughout the sampling process,
these dlagf\pfm( sieg can logically be assigned only to the process, because
clearlyy e population remains constant. It is proper, therefore, to

6&1\ of the fluctuations from semple to saraple as sampling errors.
Th ¢e sampling or chance errors, as they arc sometimes called, are found
to follow chence laws, that is, though all fogether they form a uniform
result, the value any sample might have cannot be accurately predicted.
The individual deviations are unanalyfic; that iz, the forces operating
to bring them about arc incapable of resolution into simpler and identi-
inble components, Qut of these sampling errors the statistician makes
his model. Against such a standard it becomes possible to eompare the
experimental results. Since it is possible to measure the amount of
sampling error to be expected in any given case, it is neccssary only to

note whether or not the experimental results conform with the standard,
31
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that is, to compare the relative magnitude of the experimental results and
their random sampling errors. In this comparison, if we note that the
observed results, namely, the cstimate of an effect presumed to exist,
could seldom (say once in a thousand trials, once in a hundred, ov once
in twenty) be as large or larger owing to random errors of sampling
alone, then the cffect is said to be real in the sensc that it is not likely
o be due to sampling errors alone, and the experimental results are said
to be significant. On the other hand, if it is found that often (for instance,
fifty times in onc hundred, one time in five, or even once n ten, and so
forth) results as large or Jarger could be obtained that would be aftribut-
able to random sampling errors alone, they are said to be insdgdeficant.
Ordinarily, the basis of determining whether resulis ave sighificant or
insignificant is ag follows: N

(1) The results are sald to be significant if the comchusion that they
are would be erronecus in 1 per cent or less pi(the cases.

(2) The results may be significant but furthef\ohservations are neces-
sary {that is, we suspend judgment) if\$he conclusion that the
results are significant would be wrofisn 5 per cent or less but
more than 1 per cent of the casese™\™

(3) The results are not significant(lf ‘our conclusion that they are
significant would be in error i more than 5 per cent of cascs.

The technical term for the, préé-ess employed In examining the sig-
nificance of experimental or ‘Observational results is “‘the tost of sig-
nificance.” This procesg{will be discussed much more completely in
Chapter IV, The Testing.of Statistical Hypotheses.

The examples of gr}piric-al sampling experiments given below illusirate
successive stages bynwhich the statistician builds up the statistical models
to be used in iffterproting experimental results. This method, the way
in which t-l}e;e‘ﬁ-]ier statisticians worked, provides a simple way of under-
standing uite rigorously the theoretical foundation underlying statistical
inIerezy:;P. Today it 1s not usually necessary to do an actual experiment
m Qrder to construct these statistical models based on sampling errors,
€medthe theory of probability enables the statistician to deduce sumpling
diflributions theorctically. In fact, the theorctical deduction of the
sampling distributions of ths numerous statistical quantitics now in use
is a highly specialized branch of mathematical statistics, This deduction
is sometimes a problem of great mathematical difficuliy. Particularly
when now types of observational data are under consideration or where
information of new kinds is under search, the mathematical problems
at times have proved to be so formidable that the statisticians have had
to rely on actual sampling expericnce. Although the mathematical
derivations are of fundamental importance to statistical theory and
practice, it should be apparent that the conclusions to be drawn from such
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mathemutical models would have no justification bevond the fact that
they agree with what actuaily happens experimentally or would be
arrived at from these simple sampling experiments. Theory is a tool
which is tesfed through application and whose uscfulness is decided in
connection with the application.

TABLE 2

100 BaxpoM SaMPLEg 0F 5 ¥om A Variaeue X rron & PorTnaTioN witd MeAx 30 axDp
Sranpsry Doviation 10

25 | 19 | 26 | 23 ; 25 150 | 20 (34| A |17 |25 (20138 |30 34|24/ 18
28 1351385129 |33 |19 | 32)22| 44| 1801921 (252620 | 30| 10
24 | 25 1 3022 | 30 | 29 43|36 | 27 1 17| 35| 40| 34 | 19 | 194 €3\ 28
14 138 | 22 | 87 | 24 .33 | 33 | 27 | 47 |22 | 28 | 26 | 31 | 32 30 [ 11| 36
24| 42| 20 | 47 1 24 | 43 | 16 © 21 38| 35 | 42 | 24 | 47 | 14 | B3N28 | 27

: PN
32 126 | 21 |29 |36 |20 O |46 | 29121 | 33| 26 | 56 | 40NJ22 | 27 | 23
44 | 10 | 34 | 35 | 42 ;31 | 34 | 37 1 30 | 12| 30 | 44 | 37 & “85° 551 17| 25
22 125 | 28 | 2583 |87 |46 | 18| 10| 32 | 42 | 6 | 3N27 1 12 | 29 | 23
47 | 87 (28 50 | 28 | 27 1 23| 32 | 24 | 19 | 21 | 23 |{26/] 39 | 53 | 38 | 38
80 | 30 | 27 | 20127 ) 30 | 45 | 27 | 28 | 20 | 27 | 2% (%41 + 51 | 20| 31 | 3%

32| 18136725 |27 |33 |48 125 32|26 |33 |20 |19!22] 425
17 | 27 1 33|20 | 35 | 34 [ 34|26 | 31 | 34 |3} 28 | 30 | 31 | 14 | 28 | 26
351820261627 |23 |34|21 | 30489 | 1028 25, 14| 21 | 31
22 |20 | 451832 |36 36|28 ) 20 | #N/32 | 33 24 | 38 | 36 | 19 | 31
313312719 43|31, 22| 6|33 58| 52|80 |21 |35|26|38]33

20 | 29 (49 | 30| 41 [27 |38 | 47 v33"1 23 | 24 | 36 | 21 | 44 | 35 | 53 | 32
23147 | 44| 26 | 51 | 45 | 30 | BNI™83 © 20 | 31 [ 51 31 | 31 | 43| 19| 35
35130126120 |36 351241831115 19|36 39 8 44 | 23 | 28
39 | 30, 27 | 46 | 38 ) 46 | 2TN20 | 42 | 30 |28 | 27| 20| 23 |50 | 15| 30
38 |23 | 27 212250 LILN 89136 | 21 [ 30|25 |26 | 12|22 | 26| 38
2 3
451 24 : 36 | 45 | 23 }Q\ 38 |17 | 306 127 1 3418225138135 |12
26 | A7 | 43 | 18 | 38/NL5 | 36 | 37 | 30| 25 120 | 24| 255 93 | 26 - 28
42 | 37 | 27 | 32 200715 | 26 | 42 | 26 | 39 [ 20 | 37 | 44 | 24 | 50 | 18
44 | 31 | 30 | 300 3V 36| 33 |34f20|10|33|42 43| 35 45 | 28
A% | 44 | 25 2{1\“48 37 135134 | 34| 22|19 |34 32|20 32|22
NG

49 | 27 3\(\ “26 | 24 1125 21|28 |18 T127 |30 32 35| 43
46 | 26 . \26% 32| 256 | 45 | 31 | 39 | 20 | 20 |34 |27 |19 |28 1 34| 18
18 | a8, ."4-0 36 |19 | 25 | 13 | 27 36 | 17 | 23 | 26 | 25 | 20 | 24 | 54
15...,2;1" 10 |23 | 37 (20 | 24 127 | 27 - 14, 31 : 84 | 27 129 | 35 | 88
&K_ 20|21 | 32,36 (22|26 14| 28| 24| 33 | 36 |22 | 3420 | 38

The Sampling Distribution of the Mean. The first sampling experi-
ment {0 be described deals with the arithmetic mean. To illustrate the
way In which random sampling errors arise, we set up a normal population
of values of some character, say X, whose mean is taken as known to he
30 and whose standard devistion is 10; that is, u = 30, ¢ = 10.! Sam-

11t is conventional to speak of the true values of the population as parameters
and 1o denote them by Greek letters. Correspondingly, Roman letters are the sym-
bols used for the estimates made of parameters or population values from samples.
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ples of 5(n = 5) were chosen at random from the population. By this
method, 100 samples of 5 for the variable X were obtained. The indi-
vidusl values for each of the 5 members of each sample are recorded
for the 100 samples in Table 2. Note the range in values in the respeetive
samples. For example, in one sample the range in the X-values is from
5 to 47; in another, from 25 to 33.7

Next we computed the mean of cach of the 100 samples. Those
values are recorded in Table 3. The 100 means vary between 19.4 and
40.6, and both the highest and lowest means differ from the population
mean of 30 by 10.6.  Obviously, the means are much less seattered than
are the individual valucs, These fluctuations in mean values aroknown
ag sampling errors.  The amount of sampling error in each mCan is the
difference between it and the population value, that is, 30. »~Fht' biggest
error with which any one sample of 5 estimates the sample Inean is 10.6.
The smallest error is found to be 0.2: for instance, the difforence between
29.8 and 30.0. None of the 100 estimaties is wit-houfs,éampling error.

TABLE 3 \

THE 100 Mean VALUES oF tHE 100 SAMPLES QF%\RECORDED X Tabrz 2
23.0 |38.6 |21.6 |34.8 [33.6 |81,8M20.8 133.8 |206 | 232
36.8 1 27.0 | 28.6 | 20.0 {23.8 1350 |30.6 |32.0 |236 |28.1
27 .4 28 .4 20.8 32.2 28.0 .1,'29.2 31.2 31.6 31.8 31.0
32.8 27.6 30.8 40.6 32004 27.8 26 .4 38.0 30 .4 27.2
39.0 a2.2 27.2 20.8 23,81 21.8 27.0 26.4 28 .2 21 .6
32.2 34.6 33.2 22.6 3838 224 25.8 29.2 32.4 1378
51.8 824 1306 |28.8 4\32.8 137.8 |28.0 |33.8 |22.4 238
25.6 26.6 37.6 31,4\ 25.6 21.8 24 .0 24.8 388 "2n.4
23.4 31.6 32.0 ﬁg‘.ﬁ’ 32.2 24.8 31.4 24,2 37.6 . 20.2
81.8 |31.8 [28.2 {"86v0 1260 !19.4 |350 |3%.4 |31 4 ‘| 32.6

The small san}f)les of 5 give sampling errors greater than syould larger
samples. Hagi\ve taken samples of 50, for instance, the means would
have beem\Jess scattered, indieating smaller sampling errors. This
tondeng}i toward less variation among sampling means and correspond-
mgly #Amaller differences between sample means and the true mean, and
thius 8 smaller sampling error, would continue as the size of the sample
bediime larger and larger. For example, by calculating the mean of the
100 sample means, we obtain the moan of a single sample of 500 equal to
29.8, a value very close to the population mean of 30.0.

For a sample of a given stze, the errors of random sampling increase
ag the variation among individuals in (he population becomes greater.

o

ated standurd devistion, s.  Lhis

For example, the estimated mean iz £; the estim
convention is followed throughout this ook,

¢ Mahalanobis (sec Rel 5} and others 1 I
alanobi o, ! °I8 have given tables of random samples from &
normal distribution and have shown how to use these fables to pot sam plcslﬂf any size

for any mean and standard deviation. We b , : [E———.
the empirical sampling experi describcd_ave followed this method in several ©
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In fact, the sampling errors are directly propertional to the increase of
variation in the population. As an extveme case, it Is obvious that, had
there been no variation among individuals in the population sampled
and had they all been 30, the means irrespective of sample size would
have been 30.  Henee, there would have been no sampling crrors.

The means in Table 3 may be arranged into a frequency distribution,
thus showing the number or frequency of means falling between limits
as noted on the base scale (Table 4). This frequency distribution of
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Figure 1. Distribution (}f\}nésms, X's of 100 random samples of 5 from a normal
populition with mean 30 8nd standard deviation 10. Norinal curve superimposcd
upon the histogram.

N

means is presentad ‘in the form of a histogram in Fig. 1. Measures of
central locatidn)and variability for this frequency distribution of means,
which is célletl tho sampling distribution of means, can be caleulated.
Tt is to ’bbj.’expectcd that the mean of the 100 means should be the same
as the’ mdean of the population being sampled. In our case, the mean
of t}w ‘distribution is found fo be 28.8, which agrees closely with 30, the
true mean. By increasing the size of the samples, the observed value
would hecome almost exactly 30. The standard deviation of the sam-
pling distribution of means gives an estimate of the size of sampling errors,
thus summing up the information concerning the whole distribution of
errors, If the standard deviation of the sampling distribution is large,
the errors of sampling are, as a whole, large. Correspondingly, if the
standard deviation is small, the errors are small. 'The standard deviation
of the frequency distribution of means in Table 4, calculated in the usual

manner, is 4,82,




36 SAMPLING DISTRIBUTIONS [Crar, 111

As was pointed out earlier, the statistician does not usnally cary
out this very simple and tedious sampling procedure, since application
of the mathematical theory of probability cnzbles him to determine
theoretically the sampling distribution and the standard ervor of g
statistic. The application of known mathematical laws gives results
that are ag accurate as a sampling experiment using milliong of samples,
Hence, the method of mathematical deduction 13 at the sume time less
laborious and more accurate. If the samples are ull drawn from a
normal population under ideal random sampling conditions, it is known,
as in our case, that the sample means arc normally distribuled shout the
population mean with a standard deviation equul to #/+/mwhere o
denotes the value of the population standard deviation and 44 pic number
of sampling units. Even if the variable is not normally dimyibuted in the
population, it is known that the distribution of "l_)l.:Ll.‘\',}‘l)r" of the means,
tends toward normality as the size of the sample iiavréased.,

"
TABLE 4 \/
Fruquency DisTrimmorron oF THE 100 MuaN VALU 5 WORCTIEE SAMTLES 0F 5 GIVER IN
TapLk 3 anxp TaE TEsT OF Gg{)f\bi\'l:.‘—ih‘ ar e
a AN i
- Class interval A\ . iy = )R
T Jo fe ) o I {fu — fii? U—ﬁ—
41.95 to 1 e 0 088
39.95 to 41 .95 1 hez7 6 3.77 T2 1.318
795 to 3995 5 | 2 466 B o
5.95 to 37 .05 5 AN 5405 5 540 1681 0.081
33.95 to 35.05 o J  0.887 6 960 13 6151 1.403
31.95 to 33.95 . I, 14280 17 11.28 7N 0.518
39,9§ to 31.95 | (15 17.207 15 17.30 B 2000 0.306
27_’.23 Lo 29.9?.\ s 17 17.213 17 17 .21 00T 0.003
23-!53!:'0 27 .95\ 12 14,104 12 1410 4 4100 f.313
a1 oo to 200887 7 9 444 7 941 | 5.ous36 | 0.631
-9 Lor23795 10 5.210 10 5.21 § 22 044l 4 404
i?,?a. 21.95 4 2361 B
U5NE0 19.05 1 0-8 ( - i 554
< to 17,05 0 0:3;3 5 3.354 ; BRI | 0.5
s Total | 9oy e — 0 Y R
\ 100 | 100.000 | 100 | Too 0o i ot = .48%
adi; P> 3

we izp(::jt' iize;;lrl;nl, for samples of 5 from the known normal popu]a‘tion,
standard deVia.ti()on means to he normally distribuied abont 30 with _3»
that is, 7 = 29.8 aidd\/i = (10}/4/5 = 4472, Ow empirieal ]‘BSU-[t'f":
algo nc;t-ed (Tal;)]e 4} t}é;5 = 4.82, scem to be in close agreement, I8 18
agree very well with at the ol?served distribution of mesns scems 10
using the mean and gt ; theeretmfﬂ values educed on the above theory
values. Tve . b standard deviation caleulated from the population

N With samples ag small as 5, the agrecment between
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observation and expectation seems close. Wo need, of course, a more
careful definition of what is meant by "seemingly cloge.” This is given
by the ehi-square (x*) test for goodness of fit.? Referring to the xtable
(Table 111, Appendix} with 9 degrees of freedom we note that for a
xb = 9484 ~ P > 35. Therefore, we conclude that we accept the
hypothesis that our 100 mean values (X’s) are normally disiributed,

The Sampling Distribution of the Difference Between Means. Our
second sumpling experiment deals with tho differences between the means
of random samples. Here we have taken 100 random samples of size 5
for a pair of variables, say X; and X., which are independent of cach
other. We know that our parent population of X is normally diqtri Puted
with mean g = 30 and standard deviation ¢ = 10.

The mean-differcnce values of X; and X, for the 100 sqmples have
been calculated and rceorded in Table 5.

TARLE 5
Trn MEan-DirreneNcE Valves oF X axp X FOR T}:{N\I‘OO SAMI"LT“S or &

o””
<

|
— L8 6.1 —12.6 061 126 (— 1.4 0N 4.6 |— 0.6 |— 1.4
15.0 0.2 4.8 |— 8.4 |— 04— 28|IND4| —1.5 0.6 |— &4
— 34— f4|—28|—10|— 10— 084V1.4 3.6 5.0 5.2
0.6 08— 3.0 13.0 1.0 |-M8j— 2.8) 10.6 1.4 3.5
70| —4.2|— 8.8 0.2 |—11.6 |-k |~ 6.4 0.4 06 |— 9.2
—~ 0.4 4.0 6.2 4.4 164 46.2 |—18.8 |~ 4.2 |- 2.2| 12.0
1.4 7.4 0.2 |— 8.4 4.0, 8.0 Q41— 60— 1.0|— 6.0
— 4.2 —56] 138 5.4 ™|~ Thl— 8.2 |- 5.2 7.0 1.2
1.2 3.8 13.0 5.4 [« J8.4|— 28| 5.2|- 20| 142~ 1y
1O | —4.0|— 6.2 |— 74— 5.6 |—I7.6 3.0 2.8 8.0 0.6
|

+$ )

From sampling thegry it is known that the mean-differcnee values,
(Xo — X,1)s, are ngrmally distributed about a mean of 0 with standard
deviation 4/ 20/’\;(?1, where ¢ is the population standard deviation and #
denotes the samiple size.

The eaﬁ—dlfferencc values in Table 5 are arranged in a frequency
distribution'in Table 6. We find the mean of the mean-difference values
to be, d = 39, and the standard deviation, or standard error, of the mean
af» ﬁlﬁfel ences to be 53 = 6.736. The corresponding par ameter values are

‘0 and o3 = 6. 325. The observed values are well within the limits
of sampling error.

Again we wish to test the goodness of fit of the normal distribution.
The theoretical frequencies (f;) were calculated and are given in Table 6.
Chi-square is the appropriate test of goodness of fit of the theoretieal
and observed distributions. Its wvalue is found to be 10.985. We
onter the y>table (Table 11T, Appendix) with 9 degrees of freedom and

= 10.985. The corresponding probability value is P > .27. Hence,

? See page 96,



38 SAMPLING DISTRIBUTIONS [Criae, III

we may conclude that the 100 mean-difference values are normally
distributed in aecordance with sampling theory.

The Sampling Distribution of the Variance., Our third sampling
experiment deals with the variance. Samples of 5 were chosen at random
from & normal population with mean x = 30 and varlance o2 = 100.
The sum of the squares of the deviations of the observational values Xy

TABLE 6

TreEquENeT DisreiBoTioN oF Tis 100 MuaN-1TFFERENCE VALUES FOR THE SAMPLES
or 5 Cmvex I8 TasiE 5 anp ToE Test or GOoDNESS OF Frr

Aage 2TV 1T N s
Clugs integel f fo | semg | o | ZEE
o\\\
a "
17.95t0 « ) \ N
15.95t0  17.95 1 N
13.95t0  15.95 2,9 5.79 3.21 1073041 1.780
11.95to  13.85 5 N\
9.95t0 11.95 1 \Y;
5 0% *
ggg Eg g‘_ég g}s 165 | =335 12,6025 1.091
3.95t0  5.93 11 9.26 R 3.0276 0.327
1.95t0 3.9 8 1131 |53 | 28.1961 2493
~- 0.05t0 1.95 14 12.41 [{)'6.59 | 43.4281 3.499
— 2.05t0 — 0.05 13 12,383 0.62 .3844 0.031
— 4.0510 — 2.05 12 1,198 081 8472 0.076
— B.05to — 4.05 9 ays | —0.18 0824 0.004
—_ 3 J— "" M ’~,
_13-_3;;; 1&3 - g:gg ‘2’}7 | 4133 | —4.33 | 18.7489 1.665
—12.03to —10.03 L
—14.05 to —12.05 4N
—16.05 to ~14.05 y;"a 5.60 0.40 L6600 0.020
—18.05 10 —16.05 ™
— % to —18.054N O i
Total A4 100 100.00 0.00 | xof=10.98
'\n

rax
\ df, =9; 30 >P>.20

L\ =
from theg mean X; for each of the 100 samples was obtained, and these
valugsiare recorded in Table 7.
W& have caleulated the variance of each sample by dividing the sum
of the squares of the deviations of the observation values X; from X by
n = 5. These estimates arc called Pearsenian. Thus,

Z (Xy — Xo)?
2 = 2 ———— "':"1,“',100
8:(?: 5 (J = 1, P ’5 ) (301)
where X is the mean of X for the ¢th sample and X; is the jth individual

in the 4th sample.

"l‘he ng wore arranged into a frequency distribution and the theo-
retical frequencies calculated.
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We found the mean and the standard doviation of the s}, o be as
follows: )
8%, = 68.945, Sa, = 53.279

The test of the goodness of fit of the chi-square function gave a

= 11.836. Entering the tablec of x* (Table II1, Appendix) with 6 d.f.,
the probability was found to be .10 > P > 05, It was concluded that
the sampling distribution of the & follows the x* distribution.

TABLE 7
TeE 100 VALTES OF THE SUMS OF SQUARES BASED ON SAMPLES OF § FROM A N()R.QAL
Porunarion wireg Mzasn 30 axp Stayparp Dwuviamox 10

112.0 53.2 85 2 318.8 935.2 <\
402.8 443 2 174.8 241.2 849 % )
225 .2 408.8 186.0 370.8 138\8
1808 60 .8 442.0 97.2 a5
240.0 66 .8 444 8 202.0 ¢ {281 .8
970.8 150.8 470.8 507.2 7 1613.2
362.8 401.2 354.8 21440 339.2
303.2 437 2 359.2 739" 466 .8
169.2 518.0 1158.8 32372 381.2
322.8 250.8 82.0 A\422.0 03.2
181.2 584.8 - 168,83 176.8 218.8
180.0 154.0 74\ 0° 6.0 231 .2
03.2 46.8 L1648 312.2 626 .0
85.2 353.2 1288 542.0 900 .8
354.8 730.8 N\, 234.8 57.2 187.2
R\
485.2 931\% 257.2 176.8 764.8
201.2 $32.8 346.8 400.8
575.2 ,977 2 118.8 732.2 219.2
439.2 | (2,"455.2 433 .2 228.8 48.8
534.8 (" 890.0 111.2 303.2 63.2

Each o \Sl; ! is an estimate of the variance, ¢%, of the population
(= 100) from \\hlch we were sampling, Therefore, we e\pect the mean
of the 0o samples of 5 to be approximately equal to ¢® or 100, I'rom
Sdmphn;: theory it is known that the expected standard deviation of the

§%)'s Is:
_a2V20 1) g ? = 56.57 (3.02)
n

. =
s

Our calculated value of the standard deviation of the 100 obtained
values of $¢ was 53.279. Thus, both the mean and the standard devia-
tion of the [])(}0 sample values of & differ gonstdersbly from expectation.
Estimates are considered biased egtimates if in repeated sampling their
mean or mathematical expeetation does not equal the true, or population,
value. Our obtained mean value, s, Is too low. It is 1.22 standard
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errors below the true value. Although the obtained mean is within the
limit of random sampling fAluctuations, we shall consider whether or not
& closer agrecment with expectation can be obtained.

We shall now caleulate our estimate in & different manner. Define:

E (X — X
L F=1, - -, 100

where the subscript (1) indicates the unbiased ostimate.
We caleulated the 100 values of sﬁm. They are recorded in Taflile 8.

TABLE 8 A

100 Uxpiasrp EsTIvaTEs, %, CALCULATED FROM TIIE SuMS OF SQUaRgA LN TARLE T

1 i ] \" \
28.0 7 45.3 ) 13.3[ 14621 213 422 0.7 | 44 B3R °H8S 54T
100.7 | 45.0 | 110.8 | 38.5 | 43.7| 13.5 | 60.3 | 245 9212.3 1 57.8
a7.3 23,31 1022 11.7 465 | 41.2 | 02.7 | 843 | 31.7 ] 1565
45.2 21.8] 15.2| $8.3 | 110.5 | 32.2 | 248N 135.5 fi.g 1 225.2
60.0¢ 88.7{ 16.7 | 182.7 | 111.2 | B8.7 | BOGM 143 | 71.2| 46.8
2427 12183 | 37.7 | 2453 | 117.7 1 64.53 ) 1288 | 41.2 | 403.3 | 191.2
90.7 [ 50.3 1003 117.7 | 88.7 | 138.2 ‘85| &6.7 | 8.8 100.2
98.3 : 143.8 | 109.3 | 244.3 | 84.8 29.'2“}‘18-’1_5 18.3 | 106.7 | 62.3
423+ 10087 1205 | 113.8 1 289.7 | 1088y 80 8| A7.2| 453 12.2
80.7 | 133.7 I 62.7 | 97.5 | 205 | @8 | 105.5 | 758 233, 15.8

IS ' |

Define again: N
Sty =1, -, 100)  (3.04)
\ ..—

KRG =1, --,100)  (3.05)

: NV . e o
where t-hev@bscrlpt {4} again indicates the unbiascd estimate.
Frop;ﬁlf‘able 8 we obtain

~O s, = 85.92, se, = 67.04
Theoretically, we have
dn =0 = 100 (3.06)

)
_ [ 2 2
Tty = o n—1 = 100 \/_:1 = T70.71 (3‘07}

e now observe that our calculated value, 7, = 85.92, is .46 standard
error bejlow the true value, well within the limils of random gampling
fluctuations,

We may now state that the usual method of caleulating the estimate

of the population variance, that is, 51 as an estimate of o%, gives &
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biased estimate. The explanation of the bias is that, if we use 8%, 1bs

. .. R n—1 . .
mean in repeated sampling is not o2 hut ¢?, where n is the size of

the sample, In our case:

%, is an estimate of ¢ w or 100 % =80 (3.08)

Now, our calculated value of s, = 68.95 does not differ significantly
from the theoretical value 80; that Is, it is .44 standard deviation below,
and the difference is due to samphng error alone, "\

The amount of the bias in using sz, as an estimate of o2 is pyidently

£

?11 0. The theoretical standard deviation of the distribution(of'stz,, when
n is large, 18 2 4/2{n — 1}/n. Tt may be worth ngtiii;g the relative
magnitude of the bias and sampling error. The respective values for
various sizes of samples are recorded in Table 9, «NCY

The values in columns {2) and (3) of Table\dvkhow that the bias is
substantial in comparison with random samplifiz error, especially for
small samples, for instance n = 50 or lessy Thc conclusion is that, since
there is no justification for willfully mtroducmg a bias, the unbiased
estimate, sy, should be used when estlmates of the population variance
are required as in prob]ems of statlst»lcal inference.  When mere deserip-
tion is involved, s, may propquy be used.

P4\

K TABLE &
CoMPARIZON 0F THE Bi1as I¥ USIHG 8 ? A8 AN ESTIMATE oF o WiTH SampLiNG ERRORS
N
ANy
) Relative amount of | Belative amount of
. {2 i 21 ling crror
Size of sample bias ampiing
Gy 3 V2 - 1)
'\ ™ .
L e
Ay (1) (2 3
Ke)
\ i 2 0.50 0.71
3 0.33 0.67
5 0.20 0.57
10 0.10 (.42
20 0.03 0.31
50 0.02 0.20
100 0.01 0.14

Likewise, it is customary to consider the square root of the unbiased
estimate of the variance as the unbiased estimate of the standard devia-

tion; that is,
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=Xyt o0
= F = Al A . LA :
Siy, = Ve, = — .:1’.__’5) (3.09)

Tt may be stated, however, that since 52, in repeated sampling equals
o?, Hquation (3.09) does not imply that in repeated sampling the meun,
(E(u;) = ¢. TItis well known that the mean of a sum of numbers does not
exactly equal the square root of the arithmetic mean of their squarcs.
To illugtrate: _

X =31 4+34+5+6+8+9) =5%
VMean of (X2) = V31 +9 425 +36 + 64 + 81) =6

A\

We have arranged the hundred s,’s in Table 8 into afrequency dis-
tribution (Table 10). The theorctical values have beert a%so calculated
and the theoretical curve based on these has been con%trﬁcted in Iig. 2.
The test of the goodness of fit of the theoretical fothe observed fre-
quencies gives a x3 value of 15.25 with P ><88 The maodel, in this
case built up of the sumpling errors of the wiriance, is known as the
chi-square curve. This model is importan@in statistical theory and
practice (see Table TTT, Appendix). x

TABEE 10
Friguewey DigTrisvrioN or TaE 100 UxBiasep EsTinaTrs sty oF THE PoruLaTION
Vantance 8 TasLe 8 ANDNIRE TesT or GoonNgss oF Fir

Interval 4 1 — fi o — 402
RN
331.925 t0 w h\
291700 to 331.925) ()
237.200 to 201 . 7004 7 10 —8 0.90
194,475 to 237,900
149725 to 1947875 5 10 —5 250
121.950 to,14).725 6 10 — .60
83.925 o121 950 27 20 2.5
51878\ 53925 16 20 — 0.50
41,235 to 54,875 14 10 4 1.60
265600 to 41.225 8 10 2 0.40
N7 775 to 26,600 9 5 4 i 8.20
10.725 1o 17.775
7.425 to 10,725} 8 5 3 1.80
0.000to  7.423
Total 100 100 0 r=1525

df.=8;, 10>pP > 05

The Sampling Distribution of & We have now considered two princi-
pal models, the normal and the chi-square, which the statistician has
developed. Tt is to be remembered that in the development of both of
these models it was assumed that the variance or standard deviation of
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the population was known. It is not often the case, however, in experi-
mental work that the population value is known. Furthermore, the
experimenter is usually dealing with small samples, The construction
of & model againat which cxperimental results of this kind could be com-
pared would indeed be a genuine contribution to the research worker. Let
us trace the way in which this problem was solved,

Since the population standard deviation is unknown, the only source
of information concerning it is that provided by the sample. It was
ghserved (see Table 8} that the sample variance, and hence the standard

"\
is5r
N
oA
A\
s W
N
%7 2
) L4
hto m\
2 3
= ) 4
g
& ’.\\,’
& > \
5 "N\
K\
L L L L 1 L 'l .I'. L] L L 1 [} 1 L 'l A
3 [»]
o o o o o g 0 O oo o g0 gaog
295239888 R ERARTERE
7 ~.’ 2
\\ Values of S(u)

curve based on the unbiaged estimates

Fi 2. Th hidsquare distribution i 1
R 7 g les of & from a pormal population with

of the variance, 3%, of 100 random samp
rmean 3¢ and va\i'zu'l’cc 100 (Table 10}

deviation, isvften very different from the population standa%-d deviation,
3 standard deviations was an estimate of the

Each of{these variances or _ : 0
p{}puléﬁion value. The smallest standard deviation was /6.3 or 2.51;
thelargess, 4/103.30 or 20.08. Tt was essential that a model to be effee-
e should take these sampling fluctuations into account. How this
was done was to set up a ratio of the difference between the s_amp]r—,: MCAT
and population mean to its estimated standard error. This ratio was
called . In mathematical terms we may proceed as follows: -

Suppose that the parameter ¢ is unknown, though s = 30 in our
parent population (¢ may or may not be known).  Define:

o Xmw  _(Eop Ve oD (?z L. ’100) (3.10)
5 — T == — 351,...’ 15

TR Y e

nin — 1)
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where X, is the mean value of the 7th sample and X;; is the jth individual
in the ¢th sample. Then

(1)

W%)—m N

g |-kt |
[1_,__&_] 2 (3.11)

where y is the ordinate value for a specific value of ¢ and m is the number
of degrees of freedom; T' denotes a Gamma function.
In our sampling experiment we took 100 samples of size 5, A

p = 80, n =5, m =4 O\

AN
The 100 £--values were caleulated and these were recordedin Table 11.

TADBLE 11 ¢
TuE 100 {-Varves For 100 Raxpon SAMPLES OF 5 FROM &"P:}PI:LATION wirtd Muax
oF 30 Axh UNENOWN VARIANGENGS'

o
—2.9580 —5.1504 1.7442 & -0.0501 ~0.1166
1.5152 —0.2074 —2.00720 )" 0.1728 —~0.9822
—( 7680 —0.0442 —0.6558 ) 0.2787 0.6833
0.9313 0.4588 0.4264 —1.6330 0.3563
2.5081 —1.5321 ~ 18147 —0.9440 —0.4770
0.3158 1.1654 (SN 1.1954 —0.8737 0.2672
0.4226 0.1340 4~ 0.6648 —0.6114 —1.8454
—0.9923 1.6255{\" —1.0684 —0.9877 1.8215
—2.2691 0,3980) 0.2850 0.3483 1.7408
0.4480 — 0%t —1.9755 1.0885 0.6485
2.8572 N8BT 0.4131 1.3781 —2.0359
—-1.0000 NA0.3604 2.5904 0.9643 0.4706
~0.7412 5\ 1.4382 ~0.2787 1.1624 0.1787
—1.1638.4 2.5224 —0.8669 1.5368 —0.4172
052287  —0.0331 —2.3932 . —2.1287 —2.7456
w33y —~1.0565 —2.0635 —0.2691 1.2614
WO 0.7567 ~-0.2473 1.3867 0.9126 —~1.3850
\"0.6340 0.2003 —3.3645 —2.8226 —0.1700
0.3414 0.5450 ~1.1603 —1.7148 —0.5121
0.3481 —0.9058 —4.4954 2.1574 1.4626

Theoretically, we have
pe=0

m
o = \m = 1414

where y; and o, are the mean and standard deviation of all the possible
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i-values, respectively. For our 100 ¢-values we have
E L
= o5 - 108
\/E (t — 7
& = "T=1.490 (=1 ---,100)

Again, we wish to test the goodness of fit for the {-distribution by

using the yZ-criterion,

TABLE 12

This test is given in Table 12.

Q!

N

N

DigrrierrioNn or rae 100VALurs FrROM Muarxs orF Bavrins or 5 -m.p Tnsfn ar

Goopwesa oF FiT

g W

. | N 7 e — 102
Class interval of ¢ fo fi fo— i QU\-— Foz (—U fi)
..,: ﬁ
4.005 to + e 0 0.79 ,xi\\’
3.005to  4.005 0}5 1.20 15.78 | »=0.78 0.6084 0.105
2.005t0  3.005 5 8.70 v
1.005 to  2.00% 15 12,78 2.22 4.9284 0386
0.085t0 1.005| 30 31.25 % —1.85 1.5625 0.050
—0.895 0 0.005 | 26 31,364 —5.80 28.7206 0.91¢
—1.995 to —0.995 12 13 90 —1.08 1.0000 0.077
—2.895to —1.995 9 357
~8.995 to —2.995 1 }]2 ZNL. 19 }5 83 6.17 38.0689 f.530
— to —3.995 z2) L4081
2 )
._\\ ” .
Total 10, 100,00 0.0 o = §.064
P 4 \ ;
O df = 5P > .14

Referring %0 the x* table (Table ITI, Appendix) with x3 = 8.064 and
5 degrecs\of*freedom, we find that P> > .14. Therefore, we conclude
that ot 100 i-values are distributed as the i-function.

We+have arranged the 100 f-values in a frequency distribution and
plot t4éd the histogram. The theoretical frequency distribution of ¢ has
been calculated and the corresponding eurve has been superimposed on
the histogram (Fig. 3). The theoretical frequency curve of the sampling
distribution of ¢is a symmetrical leptokurtic curve. Tables (see Table I,
Appendix) have been prepared which cnable one to determine for a
given size of sample the probability of getting a value of t greater than or
equal to +¢, or the value in the sample, due to random sampling errors
alone in repeated sampling. Against this model, when it is appropriate
for the problem involved, the experimenter may then compare his experi-
mental results with the view of examining their significance.
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Contribution of “Student.” Tt is fitting h(fm e Tfnin[. m}i the sig-
nificance of the contribution of the writer who signed h‘lhme-;(tl% _htudent-, n
te the refinement of the classical theory nth EITOlS. 'l*u-,a:r.J it B u:'-;uﬂ]_ly
held that the date of his publication (RRef. —rj, 15‘3(}8. i4 the b(‘gmlmng of
modern statistical theory and practice.  When Student began his Iwm‘k
as one of the brewers of GGuinness, Son and (Jmn.m.ny, the available
statistical tools were postulated upon lavge sampling {..}1:'Im;\_-'. . In the
course of his work it was nccessary for him to draw conclusions from the

I

) ~

Frequency

[= Ty
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S O%

o
L3
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Cwm oo o ogow
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.\“ Values of t

Fig‘lzlre 8. Distribution of the t-valyes of 100 random samples of 5. Theoretical
CYrge wi the t-distribution superimposed upon the histogram.
_résilts of small samples which themselves furnished the oni y indicntion
of their variability. Rigorous conclusions under such conditions became
possible through Student’s determination of the exuct sampling distribu-
tion of the statistic, thus making allowance for its sampling ervors. e
demonstrated that notwithstanding these sampling errors, which in the
case of very small samples are large, it wag possible to derive o test of
significance both rigorous and exact. Since the number of degrees of
frecdom is one of the parameters in the equation of the sampling distribu-
tion, the restriction Previously sot up, namely, that the sample must be
“large,” was removed, -

The applicability of Student’s test has, of course, been grestly
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extended by modern research in mathematical statistics. There are two
menmorials to Student which will undoubtedly endure: (1) a “Studentized ”
function, that is, & statistic whose sampling distribution, originally involv-
ing the standard deviation of the population, is altered so that its sampling
distribution uscs quantitics calculated only from the sample; (2) an exact
test of significance, that is, a test which depends on 2 known probability
distribution and thus is independent of irrelevant unknown parameters,
The {-Distribution of the Difference between Means. More fre-
quent than the need of comparing experimental results of a single sample
with a model is that of comparing the results for two independent samples,
for instance, the difference between the means of the experimental a&
control groups. Therefore, we present the results of an empiricdl ghm-
pling experiment desling with the model built up of thessampling
errors of diffcrences between means. The samples usec’I.j'n"this case
were those obtained in the sampling experiment described ‘on page 37
and in Table 5, where 100 random samples of five for“aq'\p‘zl.ir of variables
X1 and X, which are independent of each other, were’taken. Here we
have assumed that we do not know the populatioh standard deviation
and hence have to sstimate it from the samplez {The results in this case
are found to be deseribed by the model t-d.istfibution. Suppose that we
do not know the parameters, ¢; and gz, though we know gy = 30 and
#2 = 30 in our parent population (mva;fd 4z may or may not be known).
Define: ONY
(Xlg"—)-{zi) N Vit ny -2

) \/Z X — X+ Z(Xzz, - X g,:); ’\/;111 + niz
J ‘ \‘K "’ (3 — 1’ R 100) 3.12)

j=1!"'15

[

whore Xy is the@:e’;,n value of X in the 7th sample; Xy iz the mean
value of X, in #hé&%th sample; X5 is the jth individual in the éth sample
for X,; andgXy; is the jth individual in the ith sample for X5 Then it
may be sl;c;wn (Ref. 1) that for samples, 7, and 7. from a normal popula-
t-ion,”ﬂjé\iﬁstribution of £1is given by

v (%)

2 .
L
where y is the 6rdinate value for a specific value of ¢ and = iz the number
of degrees of freedom. In our ease,
®1 = 5, g = Dy m=n TRt — 2=8§

The t-values have been caleulated for the 100 samples of 5 for a pair
of values X and X, and are recorded in Table 13.

23 _m41
[1 N _;] : (3.13)
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Theoretically, we have

,u1=0

|| m
Fp = ﬁ'———Q = 1.1547

where z; and o; are the mean and standard deviation of all the possible
t-values, respectively. For our 100 é-values, we have

Y

=2 =.0234 '
100 @ =1, - ~M00)
E (ti - z)2 ,\:\
6=l F = 12459 A
100 T

Finally, we wish to tcst the goodness of fit for th'{é?t-d.istribution by
using the x®criterion. The test is given in Table,'b%\.
TABLE 13 \

Trg 100 +-Varyss rog MEaN Drrrsrences oF MIDWRaNpom SBaMrors of 5 FOR
Patrs oF VALURS Xpann X

"

—0. 8851 2. 4385 1 .5951;5" 0.0000 -

0.1589
3.2678 0.6438 — 020719 0.0591 0.0708
—0.5723 —0.6058 <0118 0.2773 1.4153
0.1244 —0.7650 %\ 0.6870 —0.3565 0.3285

1.3229 —0.5623 . “S—1.6920 —1.7880 01232
—0.0400 1.7302\\ 3.0003 —2.1881 —0.2028
0.2387 040299 0.7405 1.8521 —0.1802
~0.5022 2. 1985 0.2455 —0.7852 1.0640
0.2519 (21117 0.3732 0.8343 2.3370

0.0060 5511158 ~1.2991 0.3926 3.2338
0.8220./ 0" 0.08%6  —0.3300 0.9167  —0.2795
o.g%sg —0.8355 ~0.5850 —0.6295 —1.7950
—0:5301 —0.2122 —0.1953 0.5357 0.6711
Q41451 2.1691 —4.8924 1.7070 0.4798
(505952 0.0301 —2.8705 0.0983 —1.4368
N/ 0.4930 0.5699 —0.4897 —1.2175 1.1948
1.8076 —0.6982 1.1622 —~0.8290 —0.9685
—0.8922 0.4934 —1.8028 —1.2257 0.2524
0.5445 0.9909 —0.5337 —0.1298 —0.1801
—0.6213 —1.5868 —2.6307 0.4127 0.1375

Referring to the x2 table (Table III, Appendix) with x§ = 8.817 and
with 7 degrees of freedom, we find that P > .25, Therefore, we conclude
that our 108 #-values are distributed as the #-function.

The Sampling Distribution of the Correlation Coefficient. We now
present the results of a sampling experiment which illustrate the theo-
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retical or statistical model built up from the sampling errors of the
correlation coeflicient in repeated random sampling from a population in
which the true correlation is known to be zero.
The samples used were the ones obtained by taking 100 samples of
5 pairs of values from a normal population in which there was no correla-
tion at all between the variables (see page 87).
TABLE 14

TEsr oF (G00BNEss oF FIT oF THE THEORETICAL {-DISTRIBTTION FOR TIIE OBSERVED
-¥aLues or Tarwe 13

A H
Classes fo Je Jo — Ju (fo — fo)® @i’)
N
173 W,
3.505t0 w 0 S
3.005t0  3.505 3 Ao
2.503 to  3.005 0312 8.57 3.43 11, 7649, 1.873
2.005 te  3.505 4 A
1.505t0  2.005 5 ~N
1.605t0  1.505 5 8.66 —8.68 4 N\13. 3056 1.547
6.505 o 1.005 11 14.11 —3 1IN} 0.8721 0.685
0.005 to  0.506 24 18 46 5;5@» 30.6016 1.663
—0.495 to  ©.005 15 18.58 —Q»g 12.8164 0.690
— ). 995 to —0, 485 18 14.16 3 14,7456 1.041
— 1. 485 t0 —0.595 3 B.77 K N\=3.77 14.2129 1.621
—1.995 to —1.495 5 ,;. -
—2. 495 t0 — 1,995 3 &N
—2.005to —2.495 1510 880 1.31 1.7161 0,157
—8 495 t0 —2.995 1 N
— ® to —&.485 A
im:\
Total 10{{\ - 100.00 0.00 xu® = 8. 817

df. =7, P > 25
Let us define A\®

z kf\Xi,\ Ty (X — Xu)}
O\ (; =1, «-- , 100) (3 14)
VLS‘ (X ~ Xle)gz (Xa:; — ,}{-2‘)3 j=1, .- - , D ’

7

Where X1 and Xy are the means for X; and X, respectively, in the ith
sample, and X,y and Xy; are the jth individual in the 4th sample for
Xy and X, respectively, The r-values for the 100 samples in Table 5
have heen calculated and recorded in Table 15,

Then it may be shown that ¢ is distributed in repeated sampling in the

following function:
T (?’Z. ; 1) ﬂ_—i
= 1-s 2 (3.15)

- (—’*‘?'g—;

Y
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where ¥ is the ordinate value for a specific value of » and » is the sample
gize, In our case, n = H.
TABLE 156

Tyr 100 VALUEs oF THE CORRELATION CORFFICIENT # CALCTLATED YOR 100 Raxnou
SamPLEs OF 5 FrOM 4 Porviation Ny Wuwen Tak Trur Cornmrarroxw Is Zeno

—.829 — 954 .359 — 810 204
- .069 —.184 .349 876 —.614
—.592 — . 868 .168 —.748 .482
.142 — 081 —.895 .663 —.780
126 —.926 .289 152 —.640
_ _ N\
548 —. 403 - 708 — 874 —. 114
533 - 391 - .636 .870 ' l\gr\
.830 111 .11l .150 A
.563 .437 .196 .518 . 2720
678 .733 —.212 00T AN 744
—.352 196 —.108 —. 124 & —.600
.378 847 196 B840 — 885
T~ 625 .079 — 581 N .B65
—.618 .549 —.804  NO221 —.768
— .32 — . 488 —.294 \‘ O 218 737
.528 L8638 —.TIN\Y - .638 — . 238
481 —.881 — 8887 075 — &8z
—. 298 — .76 =t — .10 —.349
.298 089 %232 725 -~ .57
— .78 200 W\ 725 159 — . 478

S
<

. [\
Theoretically, we l;za{.vé\

&
\ =10

S

'...;,,. 1
AN LY
)

A0 RV

"\Qt .
where . h@d«n are the mean and the standard deviation of all the possible
r-valqei@\ espectively. For our 100 r-values, we have

...\.Vo
P )

1

F= 100 = — (596
D e=n
8 = —‘m— = 5078

. Finally, we wish to test the goodness of fit for the r-distribution by
using the x>-criterion.® The test is given in Table 16,

iTF. N. David, Tables of the Correlation C o ; i . Universit
College, London, 1938, oetficient, Biomelrika Office, University



Caar, IIT] SAMPLING DISTRIBUTIONS 51

Referring to the x*table (Table III, Appendix) with x* = 12.004
and with 8 degrees of {reedom, we have P > .14, Therefore, we con-
clude that our 100 r-values are distributed as the rfunction [Formula
(3.15)].

It iz known from sampling theory that for large samples, where » i3
larger than 100, ¢ is approximately normally distributed about szero

{p = () with a standard deviation equal to w—:l:f_ In our sampling
7

experiment it i noted that the mean of the 100 sample values of r was
—.0596 and that the standard deviation was .5076. Even with sawmples

TABLE 16
DiztrisrTioN oF 100 CoRRELATION COEFFICIENTS AND THE TEST Or ’G@S‘DNL% OF
e oF THE THECRETICAL FOR ORSERVED VALUES 2:8) k)

Clags interval Fo F fu -—Q; {fo Fo2 o — T o — 12
.S05t0  1.000 3 5.01 / :
605 to 805 8}11 897}1333 ~2.08 | 8.8804 | 0.635
A0 to 605 10 10,96 N | —0.96 | ©.9216 | 0.08¢
2050 405 11 12.100) —f.101 1,2100 | 0.100
005t 205 18 12.6¢.° 5.36 | 28.7296 | 2.273
— .195t0 005 6 1265 —&.65 | 44,2225 | 3.496
— .39 to — .185 14 1204 1.86 | 3.4596 | 0.285
— 585 te — .805 8 . yal11.08 —3.03) 9.1809 | 0.832
— 785t0 — .595 15, ] 9.i0 5.90 | 34.8100 | 3.8325
—1.000te — 705 (s 5 40 1.60 | 2.5600 | 0.474
Total 100) 100.00 .00 x® = 12.004
~
Af =8 P> .14

of n = 5, these’hlues agree closely with the expected values of 0 and
500, At leadhor large samples, the normal curve might he used for the
mathematidal model when the true value of p = 0, against which the
experimeﬁ\wal results might be compared. An exact test, however, is
avai’lt{'él'é bascd on the {-distribution as outlined above. In this case,

o

VUV _ VT o
¢ Y f=n-2 (3.18}
This test is particularly useful for small samples.

When the correlation in the population is not zero, that is, when p = 0,
the sampling distribution of » is distributed about p with a standard
deviation, or standard error approximately equal to 1 — p?/ v — 1.
When p = 0, this reduces to the standard deviation given above, or
1/+/n — 1. With large samples and moderate or small values of p the
sample value r may be substituted for the unavailable p, for example,
1 — ¢3/+/n — 1 as n measure of the sampling error of ». With small
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samples, howcever, the sample value, r, often differs greatly from the true
value. Furthermore, the sampling distribution departs widely from
normality so that the test of significance based upon the formula for large
samples may be highly misleading. The constants of distribution of »
for samples of n = 20 from & normal population as given in Table 17
are illustrative of this point.®

TARLE 17
CoONSTANTS OF DISTRIBUTION OF # IN BavprLEs (N = 20) FrROM 4 Noruarn PoroLamioN
}
0 .2 ] G .8 L)
P o
B ¢.000 0.066 0.260 650 1.400""> 2,068
B 2.710 2.820 3.170 3.910 5.420N G870
r 0.229 0.221 0.197 .15 Q.QQI 0,010
i—e !
—r 0.229 0.220 0.193 0.147 | /)\D.083 0.044
VN -1 (\\
i Y |

Fisher solved these and related problems ’b{\using the transformation

2 = tanh! ragnn

P |

=3 1og‘.(i_-:”_-fi") (3.17)

T
z' i3 to a first approximation np}'};ﬁaflly distributed about the population
. p o A Aottt i
value £ + 2 — 1) for ag {alues of p with a standard deviation \j pri

The form of the distribatidn of 2’ is nearly independent of the value of p
in the population. $The close approximation to normality of the 2'-dis-
tribution is noted\ﬁ;em the constants of distribution of 2’ given in Table

18. O\
PRLo) TABLE 18
CONSTANTE?‘&‘,bIETRIBUTION oF & TN SamrLEs (N = 20) FroM 4 NoruaL PorPUuLaTION
A g p  Mean (2" — £ @y 1 el
V
0 0000 2423 0000 3.118
.2 0053 L2422 L0000 3.117
.6 L0159 L2412 L0000 3.118
9 0249 L2308 L0000 3.114

Other Uses of Statistical Models. We have now illustrated how the
statistician builds up statistical or mathematical models against which
experimental results may be checked with a view to examining heir
significance. In order for the reader to gain an insight into the pr(;ccss, a

¢ See page 149 for criteria of normality.
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series of empirical sampiing experiments was presented. The three
principal models illustrated were the normal, the £, and the chi-square.
Certain other uses of one or another of thege models and of models not
previously illustrated for the research worker will now be considered.

The Difference between Correlaiion Coefficients,  Tho research worker is
frequently interestod in comparing the relative intensity of relationships
for dificrent characters. Although an exact test of significance is not
avallable for such purposes, a test based on Fisher’s z'-transformation
of the correlation coefficient is valuable and sufliciently accurate for most
practical problems (Ref. 3). Iet

i+ O
z;:%logc—l_ri .
oA\
2z = % log, i T ;2 O
- g L

where 7, and »s are two correlation coefficients calnulat}éd from random
samples of #, and n. individuals, respec tlvely

P s armmie £ _,___ . e
2, — zy varies normally about 2( {T 1) with standard
- i 1 .(% 0)
devigtion \}?11—‘—3 + HQ_:-—S ‘ ‘ N
Therefore, the quantity N
. SN 2
X =<4 =2 (3.18)

NS 1
V;’n]_ -3 + — 3

may be assumed to be % aUy distributed about zero with a standard
deviation of unity when the true correlafion vocfficionts in the sampled
parent population arghd fact equal.  The sampling distribution, then, of
X in repeated sanipling may be assumed to be normal, and the experi-
mental result ,z(h may be eompared against the normal model.

The Co %@nafson of Correlation Cocflicients. The z-transformation is
valuable for use in problems involving the averaging of several sample
values-fyr from the same population in order to get the combined esti-
ma’r\E i)f . Thus the weighted arithmetical mean is

RN T W)L W L G Ynnl 0L
S R S (P R (3-19)
and the standard error of 2’ is
1

VoDt mon
The ratio Xy = /¢ may then be referred to the novmal model fo deter-

mine the probability that a value as greaf as or greater than X, could he
obtained in repeated sampling by random sampling errors alone,

Ear =

(3.20)
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Correlations on the Same Sample, Comparisons are sometimes made
among correlation coeflicients based on the same sample. Hotelling
(Ref. 4) has given the exact solution of the problem of testing the sig-
nificance of the difference between 7,1 and ru under the conditions that
the signpificance is to be interpreted with respect io subpopulations of
possible samples for which predictors X; and X take the samc set of
values as those found in the obtained sample. Thus, ¥, or the variance
ratio, is i :

F= (ryy — )MV — 3)(1 + 710)
1 — 13y — 1oy — 1 + 2roaryirys)

fn, = 1; Ry =N —3
where 7,1 is the correlation coefficient Dotween the predictor Xz And the
predictand y; 7ye, between X and y; and 71 is the correlatioh, between
X, and X.. O

The assumption underlying the test is that (1) y has the univariate
normal distribution for each set of values of X ag¢~Xg,’ independently
for the different sets with (2) a common varisnce g2atid (3) linear regres-
gion of ¥ on X, and X, respectively. ’

Hotelling also developed formulas for def¢rmiining the seleetion of {a)
one variate from among three or more and, &) additional vuriates when
some have been chosen. His principal sélutions of tests of significant
dilferences AMONE 7y1, . . . , Typ &rc giVen in Ref. 4.

Fisher’s z-Distribution and thg ‘Related F-Distribution. A mathe-
matical model which has playedlan important role in modern statistical
analysis is the z-distribution déveloped by Fisher.

The quantity z is eglal to one-half the differenco of the natural
logarithms of two in e;{énﬂent cstimates of the same populatlion variance,
or to the differencorof the natural logarithms of the corresponding stand-
ard deviations. ~{Fhis distribution serves as the model against which
teats of signiﬁ‘{{g;}me of experimental results atfained in the analysis of
variance a:mjzl multiple regression problems (to be discussed later) arc
compare@x"

'Ijhi:lts, suppose we have two samples of sizes, N; and N, each drawn
ab random from one of two populations of variates normally distributed

\Q-itﬁ cyual population variances o

Compute from the two samples

(3.21)

Ny Nz
Y (X=X > (X - X
==~ and =1
T Hu

whejre X and X, are the respective means; s and s} are the respective
variance estimates; and n; = Ny — 1, ne = N2 — 1. Then

z = % log, .s_; = log,g%L (3.22)
2
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# is distributed in the form

Pt

V= Wt T ppppo (3.23)

where 7, may be taken such that the area of the curve is unity, and the
expoerimental value, 2o, may be compared with the model to determine
the probability that values of 2 equal to or greater than z; could he
obtained by random sampling errors alone. The probubility P will be
given by the ares under the curve to the right of the ordinate erected at 2.

Tisher (Ref. 3) has computed tables giving values of 2 corresponding
to different values of ny and ng, and P, namely, the 5, 1, and 0.10 pepeent
points of the z-distribution. Tt should be pointed cut that the\table
gives the values of z at which ordinates cut off “tails” of 5, 1, and®10 per
cent of the total arca of the curve for values of 7, and n, chosen so that
n1 corresponds to the number of degrees of freedom assgelated with the
larger of the two estimates of variance. X “\ ' _

The z-distribution is unimodal and syrametrical ifity = n,.  For large
values of n; and n, and also for moderate values wWhely ‘1 and 7y are eqgual
or nearly equal, the distribution of z becomxe?\;ﬁearly normal about a
mean of zero with a standard deviation, or stanpdard error,

S 3

It is to be noted that zis a Studlént-ized function; hence it is especially
appropriate for small samples. “The z-test may be regarded as an
extension of the ftest to sitlibtions where more than two variants are
under comparison. In factFisher (Ref. 2) has shown that the normal
curve, the f-distributi&}, and Student’s distribution are included as
speelal cases of the gwe-parameter family of curves reprosented by the
z-distribution. Fowihstance, since 2 = log, {t}, the values for n, = 1 in
the table of 2 ar&the logarithms of the values for P = .05 and £ = 01 in
the table of % {Ref. 3).

Tablegzgi;t\the variance ratio

N\™ F = 2 = 81 9
~\/ = ¢~ = gé;{ (3. 'L)

are availuble (seec Table TV, Appendix) and are coming to be more com-
monly used than the table of 2, since the troublesome logarithmic trans-
formation is thereby avoided. Against this advantage perhaps is the
advantage of greater accuracy in the use of the z-tables when interpola~
tions are required. Tables for seven points of the F distribution are now
available (Ref. 6),

The Binomial Distribution in Sampling Theory. We have previously
described the binomial distribution and indicated that the normal dis-
tribution may be used as an approximation to it (see page 27). Since
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this distribution plays such a significant role in sampling theory, it should
‘be considered somewhat more broadly.

A Sampling Ewperiment Leading to the Binomial Distribufion. We
begin by presenting the results of a simple sampling experiment consist-
ing of the tossing of 10 coins 512 times.

The record of this cxperiment is available in Lable 19. The ohserved
values for the several probabilities of success, that is, the proportion of tails,
X, are given in column 2. The caloulations for the mean and standard
deviation of the number of successes are given in columns 3 and 4. It is
found that the mean X = 0.5 and that the standard deviation & = .162.
The corresponding theoretical values are 0.5 and .156, respectiveld\

TABLE 19 O\

Tur 'I'EeT oF GoopnEss oF FiT oF Tk THEORETICAL Bivomis L DIstRITHIION FOR
rEg OnsERVED DISTRIGUTION OF SuCemssEs (T0E Prororrion o»h/TaiLs) FROM

~

512 Tosses oy 10 ComNs at & Tmue ™

| : - Ky
| - (f, — fie
Xz fo X fxe FeQad T fo—J e 7, S
_ ) _
W (2) (8) @ NG ‘ @
1.0} 2\, 2.0 280" | 0.5, , 15 | 0.4001
0.9 5 4.5 | ~305 5.00°° 0 L
0.8 15 12,0 1e390.60 | 22.5 — 7.5 2.5000
0.7 68 47.6 33.32 | 600 8.0 | 1.0667
0.6 103 53.8: 37.80 | 105.0 0.0 | 0.0000
0.5 134 7" 33.50 | 126.0 §.0  0.5079
0.4 95 887 15.20 | 105.0 —10.0 | 0.9524
0.3 55 N 18.5 495 | 60.0 ~ 5.0 | 04167
0.,12 23 > 4.8 0.92 ¢ 225 0.5 ' 0.0111
Q. 80 0.8 0.08 5.0 . 4.5 | 3.6818
0‘0} 9\}1\0 0.0 000 | 0 5}5'5
& _ L
Total " 512 256.0 141 42 | 512.00 l it = 0.5457
o \d : df. =8; 30>, >20
Mplc valies: B
X =314 =03
14142 )
s= N5 — 23 =.162
Population values:
uo=05
(6% 5
¢ = N=—5— =156

In column 5 the theoretical valucs f; are given, TIinully, we tested
tk}e agreement between the observed and theoretical values by means
of the x*test [column (7)]. We wish to test for goodness of fib and
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enter the xtable {(Table ITI, Appendix) with xi = 9.5457 and 8 degrees
of frecdom, It is found that P > .20. We conclude that the observed
distribution may be regarded as in accordance with the binomial distribu-
tion law; that ig, the discrepancies between the observed and theoretical
frequencies may be attributable to random sampling fluctuations. The
theoretical basis of the binomial distribution is given helow.

The Binomial Expansion. Assume that we take N random samples
each of gsize n and in each of which a specific number I possess a given
character ¢ and the remainder » — { do not possess the character. Let

?—i =pand 1 — % = g; then the frequencies of samples with £ = 0, 1, 2,
QY
, 7t are given by terms in the series N (g + p)7; that i,

. o n(n - 1‘ap~q“"’ R .
N[g“—i—ng Pty + - itn — tj'+ \+:0

N (3.25)

The terms in the expansion (g + p}* are l‘ela.tivéf\requencies in the
frequency distribution of all possible different samples, classified by
numher of successes, say {, that may be deawn from the population
according to the rules of simple random.Saropling. The distribution

ay be called the sampling disiribution™of the number of successes,
t=01 2 , &+, n Itis ghoré commonly known as the bino-
maol dzstr?bfrmon, since it resulis imm the expansion of (g + p)*

The mean of the dlstrlbutlon xs miven by

= Np (3.26)
and the variance '{'",\
N\ ol = npg (3.27)
If instead of the\actual number of ['s in each sample the proportion
\ ¥

of t's, that i is, ‘\th of the number in each sample, s recorded, the mean

pmpmhoniqt f’q would be

L=p (3.28
and the 'xarmnte
O o =2 (3.20)

The standard deviation of the sampling distribution or the standard
error provides a hasie for judging the excepiionalness of any obtained
sample, ag illustrated in the following example.

Tixamprr 2. The Measuremen! of Exceptionalness. Assume that in
a random sample of 50 individuals, 16 have o chavacter, say 4. Is this
cxceptional? It is known that in the general population 20 per cent
possess the charactor A.

Of a random sample of 50 individuals the exact proportion who
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would be expected to have character A is given by the sum of the terms
of the expansion of the binomial (4 + 3% from the seventeenth term
onward. This proportion equals .031. This method, though exact, ig
extremely laborious. For this reason it is advantageous to use an alterna-
tive method. ) )
fp=g=4%andnis large, the area under the appropriatc section
of a norma! curve gives a close approximation to the point distribution
of the binomial. Departures from the given conditions result in less
accurate approximations. For example, if either p or ¢ is small and n is
not large, the approximation could be rather crude. A practical pro-
cedurc for determining the relative values of p and ¢ for a given g if tho
normal curve may be expected to represent the binomial is the following:
The mean of the distribution should be, say, three standard deviations

from the start. Thus we want O
np > 3 v upg N
n2p? > Gnpy \\
np > H1 — p) NN
pin+9) > 9 \

If, for example, » = 50, then O
p > {3.} 15

In using the normal curve ais~.z{ri"a.pproximation, we proceed ag follows
in the problem worked out abdwve by the binomial expansion. Caleulate:

Xewp 16510 _ 4o

&g 2.83

Aceording to thespbrmal table,
2NX

K& P =025
This val e;iﬁ‘compared with P = 031 above.

The (Sampling Distribution of Differences between Percentages. Fre-
quently, the experimental results relate to the case of two samples where
ibds esired to know whether the two samples may be regarded as random
“samples from the same population. Thus:

(1} In sample 1 of size n,, there are {; individuals that have the char-

acter 4.
(2} In sample 2 of size ns, there are ¢, individuals that have the
character 4,

Could the two samples be random samples from populations in which
p (the probability of character 4 oecurring) is the same? Thus:

ot
({3} g
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The theoretical or mathematical model against which such experi-
mental results may be compared can be built up as follows: Assuming
that p1 = ps = p, the variation in # in repeated samples of n; follows the
binomial (g + p)»; similarly, the variation in ¢, in repeated samples of n,
follows the binomial (g + o)

1 varies about a mean of mp with a standard deviation, v/n:pg;
11/n1 varics about a mean of P with a standard deviation

1 — Pa A i1 _ ) _
n_l\/nlpg_'\'lﬁl’ E[n—; PJ—O

That is, the mean in repeated sampling is p; O\
t 2 g 4 :\t\ )
E — - = . P oA
[?%1 p] nl :s,,\;
Similarly, N
(2 £2 S
= — = E — - e
E L’w p] ’ [ﬂ-z p] iy
Also, )
., \/
2| -0) ()
T iz ~ (
Consider: '\
d=1 QB
J,!’}t"‘ 8

e Y ALY b }
[dQ]_[(n_n- ) ‘\mr) p)+(m p)

n y e &N\

,>\_ 22 = 1_|_l (3.30)

D=t =py( L+ L .

A T 1
o7 a5t @30
The ratio \:\'

: 4 -

SN &__ m_ na , (3.32)

Q 7 11

in repeated sampling will be approximately normally distributed about ()
with unit standard deviation. The normal modal may therefore be used
for comparing the experimental results. The complete procedure is

1. Assume the hypothesis p, = p. = p.
2. Estimate p from the data; the maximum likelihood estimate is
i+ i

n1 + ng
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i1 53

¥ Tin

3. Calculate the ratio —— =———"
ot
pq n_' o

4. Refer to the normal probability scale; consider whether the results
are compatible with the hypothesis.

PROBLEMS

The following problems are designed to give the student an under-
standing of sampling and sampling errors. The following normal papu-
lation of numbers with a mean of 30 and a variance of 100 may ke used
for the exercizes. Write or type each of the 100 numbergson a small
square of cardboard or stiff paper. Place the 100 pieces in& ok and mix
thoroughly. Then draw one card at random from the boxand record the
number on it. Reburn the card to the box. Mix thé 2ards again, draw
o second card and record its number, and so on qg{ik'a sample of a speci-
fied gize has been ohained. G

FrEQUENCT DIsTRIBUTION OF NUMBERS, X8, IN A,Nb‘mmn PoptTaTioN wWITIL g = 30;

625100“\“
X f X 5 oY X7 X i
57 1 I 28 3 15 1
53 1 38 2 27T 3 14 1
49 1 37 2 26 4 13 1
18 1 ,z“’?a‘s 3 25 3 12 1
47 1 (e 3 24 3 n o1
46 1 X 34 3 23 2 71
45 1, 3 5 22 2 301
4 15K 32 2 21 3
43 2,80 31 4 20 2
42,30 30 10 19 3
\.8 29 4 18 3
.'s’gé\ 2 ‘ 17 2
o0 -' 16 1 S
O Total 100

g

Q"

Exercise: Selecting 20 samples of 10 at random,
1. Compute 20 means,
2, Clompute 20 variances,
3. Cm.nbinc to make 10 random sets of paired values of the means; of the
variances.
4. Compute 10¢'s for differences between means of uncorrclated measures.
5. Take 10 samples of 5 in pairs and caleulate the correlation coeflicients.
8. Combine the results of the individual students in cach case, form the
frequency distribution of the statistic, and plot the histogram. Caleu-
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late the mean and standard deviation of each distribution and compars
with the pepulation and expected values,

References

. Visher, R. A., “Applications of ‘Student’s’ Distribution,” Meatron, Vol. 5

(1926), pp. 90194,

, “On a Distribution Yiclding Error Functions of Several Well-Known
Statistics,” Proceedings of the International Mathematical Congress, Toronte,
1924, pp. 805-813.

, Statistical Methods for Research Werkers, 10th ed. Edinburgh:
Oliver and Boyd, Ltd., 1946,

. Hotelling, Harold, “ The Selection of Variates for Use in Prediction With"?‘s*mne

Comments on the General Problom of Nuisance Parameters,” ol nhls of
Mothemalical Statistics, Vol. X1 (1940, pp. 271-283. )

- Mahalanobis, P, C., ef al., “Tables of Random Bamples from a:l.\}}m"al Popu-

lation,” Senkhyae, Vol. 1 (1 934), pp. 280-328, G\

Merrington, Maxine, and Thompson, Catherine M., “Tahlos) of Percentage
Points of the Inverted Beta (F} Distribution,” Biomegriia, Vol. XXXIIT
{1943), pp. 73-8%. o\

XN\
. “Btudent,” “The Probable Frror of a Mean,” Bigm¥trika, Vol, VI (1908},

pp. 1-23, A
g® '\
NN,
¢ 3
F 4 N\ N
O
N/
L A
&N
o\
S N
R 'Q"‘
R\
\\
N\
PAN
'\.‘s.}
4 "\ \
 § *
79 N/
A/
O
N
A&
Ol
R\
N\
AN
a\



CHAPTER IV
THE TESTING OF STATISTICAL HYPOTHESES

The Role of the Hypothesis in Scientific Investigations, In the well-
devcloped empirieal sciences, scientific procedure is primarily concerned
in deriving predictions the validity of which is tested by the regults of
cxperiments. The modern development of science has beeh ‘much
facilitated by the practice of using hypotheses in planning @bd guiding
scientific inquiries. Ewven a casual study of the investi gat’itm-s af emincnt
selentists reveals that they were guided in their work hylgeme theory and
that this theory guided their obgervations and exppxjifncrits. Where the
theory proved inadequate, it was modified. Ogesionally it was aban-
doned completely, but then another was soueht to plan the action.
Significant experimentation requires the guidanice of a hypothesis, and &
successful experimenter does not colleet gbsétvations unguided by theory
to which the facts are related. Bacon mainiained that if encugh instances
are gathered and tabulated correctly,the principle which explains them
will simply emerge without angihypothesis about them having been
formed. This contention has, j@bt“been proved by the experimenter.

The working hypothesis.plays an important part in slatistical vesearch.
It serves as a guide in _plamnhing the investigation; in determining whatb
data to collect; in clagsifying, ordering, and reducing them; and finally
ag the bhagis for form}lating the judgments with respeet Lo it.

Similar to_the\working plan of Newton, the scientist who did not
formulate h}j{?‘(}mses needlessly (“ hypotheses non fingo?), or to the meta-
physical requirements of Ockham, the logiclan who considered it needless
to recur e many entities when it was possible to get along with fewer
ones ‘(‘:i’nuﬂ.quam ponenda est pluralitas sine necessitate”), the statistician’s
P\rgfé;l'red method is to test the simplest hypothesis and to hold to a
}miﬁimum number of new quantities or constructs. ‘Thus the p]'eferred

ypothesis used by the statistician in the examination of his data iz thub
the apparent variations and the estimates of presumed effeels may be
attributable to random sample errors or to fortuitous factors rather than
to the action of new causes. This hypothesis can be tested by the
application of the theory of errors. It will be recalled that the statistical
models previously deseribed were constructed on the basig of sampling
errors, As long as experimental results conform to these models, the
hypothesis of chance (or, more specifically in this case, sampling errors)
being the causc of the observed effects is accepted.

The hypothesis that chance factors may have given rise to an observed

62
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effect is frequently spoken of as the nul] lypothests. This hypothesis is
met with in a number of different forms in research or statistical work.
In experimentation, for example, it is often desirable to compare the
effects of various methods of treatment or of production. The null
hypothesis can in these cases be stated as follows: There is no difference
in the outcomes of the several treatments, or, The outcomes are the same,
This method is equivalent to determining whether or not the observed
difference should be ascribed to random fSuctustions or judged to he
significant, that is, ascribed to the differential treatment. The null
hypothesis assumes the former alternative, which, if found to be jncom-
patible with the facts of observation, is then rejected. More gederally,
the null hypothesis may be stated thus: Can the samples undefgxamina-
tion be regarded as having been randomly chosen from the-sanié or sim-
ilar population? A\

General Theory of Testing Statistical Hypothesis.\In Chapter III,
Sampling Distributions, it was stated that the statistician developed
mathematical models against which the research'sworker could compare
hiz experimental results and draw conclusiens® with respect to their
significance. 7The process of determining s@ﬁmtical significance was said
to consist in comparing the numerical data’ (or some function of them)
obtained in a particular experiment with*the model to establish whether
or not they conform to the model.,.,’fIfhe name applied to the process of
examining the significance of th&Sdata is the fest of significance. In
dealing with the sampling diaﬁrjbuﬁion we were concerned with testing
the agreement between thedistribution of our set of sample values and a
theoretical distribution.ﬂ“l)s this case, we spoke of a test of the goodness
of fit. \\1
More recently, Av¢ have come to speak of the problem of testing
statistical hypothgses and thus to speak of the test of significanee relative
to the hypotlgegis’in question. Before proceeding to illustrate the uppli-
cation of thesétests to some practical problems met with by the research
worker, we'shall deseribe briefly the theoretical basis underlying current
procedt&es in testing a statistical hypothesis.

,\Silﬁﬁposc that a random variable X 1s the measurement of a certain
dhagacter and that a number of repeated measurements are made; say
N times. We thus obtain ¥ random variables X,, X,, . . . , Xx. The
N random variables are assumed to be independently distributed, and
the set of values is said to be a sample of & independent obscrvations on
X. The sample of N observations may be represented as a sample point
E, in the N-dimensional space having as its coordinates X, X, . . . » X
The space in which the point lies may be called the sample space, W.

Aggume that the distribution of X is normal but that the values of
some parameters 8y, . . . , 0, speeifying the population are unknown.
Any assumption about the unknown paramcters 8, . . ., ¢, may be
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called a statistical hypothesis. 'The statistical hypothesis, Hy, is called a
simple hypothesis if it determines completely the values of all the g-param-
cters, for cxample, if it specifies that 81 =1, 62 =3, - - - . If the
hypothesis is consistent with more values than one for some parameter
it is called a composite hypothesis; for instance, the hypothesis that 6, = 8,
for a digtribution of X determined by two unknown paramocters is a
composite hypothesis,

For simplicity, we shall consider the case of a single unknown param-
eter. That i, let us assume that only one unknown paramcter, 6, is
involved in the distribution funetion of X and @, or F(Xy1, X, . . ., X,
8). We wish to test the null hypothesis, H¢:8 = §o against tHe only
admissible alternative hypothesis, H::8 = #.. For example;\we may
test the significance of the deviation in the mean of a samiﬂe on the
hasis of a random sample of N independent observationa X7, . . . , Xu
from s normal population X. Then H, is the hypdthesis that X is
normally distributed about the mean 8, with standartt deviation, ¢, and
II is the hypothesis that X is normally distribuded about the mean 6§,
with standard deviation, ¢. RN

The testing of the statistical hypoth {@involves the choice of z
region, w, called eritical in the sample Space W. It also involves the
decision to reject the hypothesis if andvenly if the sample point 7 falls
in w. Therefore, the test of the'sta'zitistical hypothesis, Hy, consists in
rejecting Ho, when the sample peirit, B, falls within a specified critical
region, wy, and in accepting IFy¥or at least not rejecting it) if the point
falls without ws. The fur@ament-al problem is, therefore, the specifica-
tion of the critical regigu, Wo.

The principle u}‘{o}t\\vhich the choice of the critical region depends

was first advanced hy» Neyman and Pearson (Ref. 3). It is based on the
control and mibifelzing of two kinds of error involved in testing the
hypothesis, H P‘.\”{l) the unjust rejection of the hypothesis, described as
an error of\he first kind, and (2} the failure to reject the hypothesis when,
in fact, ‘jt\is incorrect, that is, when some other hypothesis, H,, is true,
designated as an error of the second kind.
."\:DHB probability of an error of the first kind determined by the
hygothesis under test, say H,, is called the size of the corresponding
critical region, wy, and is given by P|{FEewo|H,}, that is, the probability
that E, as detormined by the observational values will fall within the
rvegion, wq, as determined by the hypothesis, I7;. This probability may
be designated by a.

The probability of an error of the second kind is P{Ee(W — wo)|F{1}
where (W — wo) is the set of ull sample poinis outside . It may be
specified as 3. This probability is called the power of the test with
respeet to 174,

Neyman and Pearson (Ref. 4), assuming that P(Xy, . . ., X.|Ho)
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and P(Xy, . . ., X,|H\) are the probability laws of the X's as fixed
by the hy pothesus Hy, being tested, and by Hy, a singlo alternative, have
shown that the region ws, established by the inequality

PXy, - -+, X)) > EP(Xy, - -+ XA |Ho) {4.01)
when & > 0 is a constant selected such that
P{Eewg|Hg} = g {4.02)

is the best critical region with regard to H, having size @. The eritical
region, which provides the most powerful test with respect to Hy, is ealled
the best critical region for II, with respect to H;.

This theory of testing statistical hypotheses is based on the ghmple
prineiple of arranging the test, that is, of choosing the eritical repidn, w,,
50 as to minimize the probabzhty of errors of the second kind whf_[c, keep-
ing the probability of errors of the first kind constant. Thc size of the
eritical region is then determined by o and its powergisidesignated as
1 — 8. TItis obviously impossible to make both « anﬁl Bﬁrbltrarﬂ} small.
The deeision of just how the balance between the\two kinds of errors
should be struck must be made by the investigabgr'and will prcmmably
be based on the relative importance of the tivo kinds of error in the
parficular situation. Tt is the function of s&tnhcal theory to show how
the two risks of error may be controlled®ahd minimized.

In practice, the investigator contrals the first kind of crror by choosing
as the value of «, the boundary of the critical region, a specified level of
significance, say the 5 per centy, I per cent, or 0.1 per cent point value
of the criterion. The level js décided upon at the time of designing the
investigation and depends ‘i the nature of the problem and the risk in
crror the mvest]gator willing to accept. The custom is to reject the
hypothesis tested if tl% observed valuc of the criterien is greater than
(lies beyond, usually) the 1 per eenl point, to remain in doubt if it lies
between the 5 pereént and 1 per cent points, and to aceept the hypothesis
if the crlterlqn\is less than the 5 per cent point. With respect {o the
control of ‘bhe ‘second type of error, studies of the power function of tests
have bwn made and tables are available for securing the probability of
eII'OI‘S\Df the second kind in some instances. Neyman and Tokarska
(Beh ) have compiled tables for use in determining the probability of
errdrs of the second kind in testing Student’s hypotheses. Tang (Ref. 6)
has tabled the power function for the test of general linear hypotheses,
which reduces to Fisher's z-test. Lchmer (Ref. 2) has prepared further
tables for detecting the probability of errors of the second kind in dealing
with linear hypotheses. Eisenhart (Ref. 1} investigated the power
funetion of the x2test.

The relation between the probabilities of the two kinds of error
involved in testing the hypothesis, Hy:6 = 8, against the alternative,
H::9 = 4, isillustrated in Fig. 4,
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The probability of accepting the hypothesis, Hy:6 = 0y when it is
true, is given by 1 ~ «. That is, the critical region, wy, is the area to the
right of the ordinate erected at X = X, in the g-curve; the probability
of accepting the hypothesis, H1:8 = 6 when it is true, is given by 3, the
aren under the 8-curve which lies to the right of the ordinate at X = X,
The quantity 8 relative to 8, #1, and o as defined previously iz the
power of the test which specifics wy 88 the critical region. Ilence, o
and (1-8) represent the probabilities of the first and second kinds of error,
respectively.

Figure 4. Normal distributions of the univartates p(%81) and p{x,#q) with critical
regions for tosting slternative hypotheses relative to t})o mean,

Neyman and Pearson use a criterioniﬁé.sed on the principle of likeli-
hood as the basis for accepting or rc’jec'-tiilg a given hypothesis. In the
case of the hypothesis tested abovepds, the ratio

Po(X0 Xy, - - -, X
= ke R ¢ 4.03
A ,'PI(Xls XQ: Ty Xﬂ) ( )

is designated as the likeljhobd of the hypothesis, ITy, as tested against the
single alternative hypethosis, H..

In aceordance with Equation (4.03), a most powerful region, «, I8
compriged of all pﬁiﬁfs which satisfy the incquality
R X, - JXMHYD o, N

O PX,, -, XH) 2 (o4

where &35 sclected so that the region should have the required sizc «a
asﬁin@ib’a.ted in Equation (4.02). T'or example, the principle for choosing
the ¢ritical region, wo, may be applied to the case of testing the significance
of a mean of a sample from a normal population, where Hy:8 = 8 and
H.:0 = 8;. We specify that the critical region required and defined by
the inequality [Equation (4.04)] has the size o = .01.

Since, under the hypothesis Ty, the variate

| %E (Xe—60) (a=1,° "+, k) (4.05)

is normally distributed about a mean of zero with variance 1/N, & can
be read from a normal table:
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232
=N (4.06)

The most powerful region of size .01 is then
E x. 2 2.328

that is, the test specified by the region (4.07) is most powerful with regard
to all alternatives, # > §,.

If the probability of an error of the first kind, a, and of the sceond
kind, 8, is specified in a given problem, it is possible to determine the
minimum size of sample, N, for which the power of the most powerful
region of size « is equal to or greater than 1 — 8. For testing H pagainst
H,, for instance, the minimum number of observations is et}ual to the
smallest positive integer, N, for which

By(a) < 8 ...‘\:' (4.08)

where Bi(a) denotes that for a fixed N, 8 is a singlesvalued function of a.
T'or example, (1) if the arithmetic mean, X, 9 ppredetermined number
of & observations is less than or equal to a raperly selected constant, &,
the hypothesis being tested, Hy, is ac Lepted and (2)if X > k, the hy poth—
esis, Hy, is rejected, N and % are determmcd such that the probability
of (1) is equal to I — @ when ¢ = ﬂuand is equal to g when 6 = ¢,

Sequential Test of a Statistical erpothems Recently a test has been
devt‘loped whereby the number &F observations is not predetermined but
is kept as a random variables \nstead of deciding in advance the number
of items to be included if 3 'sample, the data are analyzed contmuously
as they are being colle\si‘ed (Ref. 7). In such casges where it is possible
to examine the data@® they originate, as in some manufactured pr oduets,
the sequential prplalility-ratio test frequently uses half as many observa-
tions as the cufrért most powerful test. Briefly, the principal properties
of the sequ@hal test are as follows:

el
™

(1) The procedure by which a sequential test of & statistical hypothe-
315 13 c‘s,irxed cut depends on the following rule of hehavior:

\(a) To accept the null hypothesis being tested.
(b) To reject the hypothesis.
(¢) To suspend judgment, that is, to continue the analysis by making
an additional observation.

The test procedure is kept up sequentially until either decision (a) or (b)
is made.

(2) If « is the probability that when H, is truc, the alternative
hypothesis, H,, will crroneously be accepted, and if 8 is the probability
that when H, is true, H, will falscly be accepted, then it is necessary thaf
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a8 <l Sequential analysis determines in the course of the analysis
whether or not the data justify a deci sion with a risk in error of judgment
as small as  or 8. The number of observations necessary will, on the
average, depend on how small o and 8 are made; also on how fine a dis-
tinction is made between Ho and Hi.

(3) The fundamental eriterion basie to the decision in (1) is the likeli-
hood ratio, L, which is the ratio of the probability that the one hypothesis
truthfully specifies the origin of the observed data to the probabilily that
the alternative hypothesis does. The value of L required to accept Hy

is 1- ‘8; that required to accept Hi is L is computed aij’@r each
o

11—«
observation and is compared with the eritieal valucs necessary for avdecision.
These values of I are independent of the number of observtidns,  Since
the likelihood ratio, as used in sequential tests, is 0, contithiing product,
congiderable saving in caleulation results by using lgg‘;’-‘f}.ins’rm(] of L.

In practice, the guantities « and 3 are usua.ll&};aken a8 quite small,
rarely greatcr than .05 and frequently .01 or lesg.
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CHAPTER V

CURRENT PROCEDURES IN TESTING STATISTICAL
HYPOTHESES

Up to this point, we have defined a number of statistical models
against which the research worker may compare his experimental resulfs.
We have also discussed the theoretical formulation and solution, ofsthe
problem of testing statistical hypotheses. It is now the purpose te)show
how, in a given situation when faced with some practical pl;c;-blem, the
research worker may utilize the principles underlying the thepry in decid-
ing which model, if any, is applicable in his parficular problem, and how
to choose it intelligently and effectively. This chapter will be devoted
to illustrating ways of solving a number of problemgmost of which are of
frequent occurrence. \\

Problem V.1. The significance of a méaft’ from a known normal
population. The simplest case of testing’significance is in the problem
where the population is known, that ig) the population parameters, the
mean and standard deviation, are kjijdwn and the quantity whose sig-
nificance we are interested in tesﬁh'g may be assumed to be normally
distributed in the population,. Specifically, the question is: Could this
sample be a random sample from that population?  Such, for instance, is
the problem of determining/whether or not a given sample of pupils to
whom an intelligence t-eg as been given could be regarded as a random
sample from the poptlation upon whom the norms of the test werce set
by the author.

Agsume that it is known that for a particular intelligence test the
1.Q's are formally distributed about a mean of 100 with a standard
deviation\of '17 1.Q. points. The test is administered to a class of 36
pupilgwho in other respects appeared to belong fo this population.  The
medn\IQ. for the class was found to be 108. May we conclude that the
class¥is a random sample from the specified population—that the mean
ability of the class is the same as that of the population?

To answer this question we need to determine what model should be
used with which the experimental result can be compared. It ig known
from sampling theory (page 36) that the means of samples of 36 cases
drawn at random from this population will be normally distribu.tec‘l about
the population mean, 100 I.Q. points, with a stanﬁard deviation (or
standard error) equal to o/v/N =% = 2§ L.Q. points. We found a
mean of 108 1.Q. points. How often should we expect to ﬁnq a mean ag
high as this or higher in repeated sampling from this population?

69
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The answer is obtained by referring to the normal probability table
(Table I, Appendix). To enter this table we must convert the raw score

to a standard measure. Thus:

108 — 100
2.833

From the table, we find that in repeated sampling from this populaticn
we should expect to find a value a8 high as or higher than the one obtained
in 1 — .9976, or 0.24 per cent, of cascs. ‘This probability is lower than
the level of 1 per cent which we decided to use. Therefore, we conclude
that the sample could not have been drawn from the specified pop@lation.
We arc aware that in making this statement we shall be wrong m\ {y.24 per
cent of the cases; but this is a risk we are willing to run,.&Such is the
statigtical conclusion. The education conclusion is that the mean
ability of the class tested is significantly above the norﬁf’s‘pcciﬁed for the
population. R4

Problem V.2. The significance of a mean ftom’ an unknown normal
population. We shall take next the problem it which the population
mean is known, or speeified by hypothesis 586 some value, say 100 1.Q.
points, but in which the population st-z@ndé.rd deviation is not known.

We gave an intelligence test to a Blass in Grade 5 consisting of 26
pupils. The mean 1.Q.-score onjsh’el Yost was 93, We want to know if
our clags may be assumed to be arahdom sample from & pop ulation whose
mean, g, equals 100 1.Q. pﬁoihﬁs’. To answer this question we need to
compare our result Withmt@e nppropriate model, which in thig case musk
be the distribution of 3 {(8¢e page 43), since we do not know the popula-
tion standard devi'a:thm. Thercfore, we calculate the value of I, say bos
for our sample and’compare it with the tmodel. If we find that the
probability of 2efting a value of ¢ greater than or equal to £t in repeated
sampling 13\[@55 than 1 in 100, then we conclude that the sample could
not havébeen drawn from this population.

Thc necessary calculations and procedures arc as follows:

= 2.82

2 =

w\:.\:‘ _ =) oY
XF N = 26; X=T}§=93; sﬁ=zg};i‘)’ = 144
he value of ¢ is _ )
w=E -8 _ T o9

‘\/'s’_ - 2353
I

We compare this value of #, with the model as given in the table of the
t-distribut-i?n (Table 1I, Appendix). We enter the row of the table
corresponding to n = N — 1, that iz, n = 25 in our example. For
samples of 26 (n = 25), we expeet to find values of ¢ greater than or equal
to +2.787 in 1 per cent of cases; so, clearly, we should expeet to fin
values greater than or equal to +t, = +9.97 in repeated sampling from
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this population in an even smaller percentage of cases. Ounr conclusion,
therefore, is that it is unlikely that our sample was drawn from a popula-
tion in which the mean 1.Q. was 100, or, that the mean ability of the class
is significantly different from the norm of 100,

Problem V.3. The significance of a mean from a small finite popula-
tion. In most sampling problems a large population exists or is assumed
to exist. At times the problem arises of using 2 sample which may
comprise an appreciable part of a relatively small finitc population
sampled.  The standard error of the mean is then adjusted as follows:

[+ N —mn
o = VeV =1 {©.81)
oA\
This adjustment follows from the fact that sampling errors 'ai'féct only
the estimate of fhat fraction of the whole which is not imehided in the
sample. The value of ¢, the population standard deviditior, is usually
unknown, but the unbiased estimate of it can be QBtained from the
sample. N is the size of the population; », the nuinbet of sampling units.
For example, suppose a sample of 50 female stutlents has been drawn
at random from the 500 female freshmen e r’qﬂéd in a university. We
wish to test the hypothesis that the meaddipight of the 500 freshmen is
equal to 168 cm. S
We caleulated the following statistivs for the sample of 50:

X = 1648%m
$x = 5‘9 em

N

Then g L300 \[500_;‘“_50
ECVe N 199
N =79
PN\ _T—
\ to S3 .
Ov 164.8 — 168
= = T o g,
Q 79 05

&
o\

‘Vﬁ@{:{ﬁlpare the value {; with the ~model. Fnatering the table of the
t-disthibution (Table IT, Appendix) withn = N — 1, or 49, we find that for
n = 40, —Loogs = —3.5581 and that for n = GO, —tons: = —3.460.
Since our value is obviously greater than the tabled values, we may reject
the hypothesis that the mean height of the 500 freshmen is equal to 168
cr.  If the siatement that p = 168 were true, we should expect that in
repeated sampling, 50 students selected at random from the 500 would
give a mean as divergent as 164.8 less than once in 2000 trials.

Problem V.4. The significance of the difference between means.
More frequently the problem is that of testing whether or not there is a
significant difference between means, that is, whether or not the samples
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may be regarded as random samples from the same normal population;
to test the hypothesis that the true difference beliween means is zero.

The experimental results may also in this case be compared with the
model t-digtribution in making the test of significance (scc page 47),
because (1) the differcnce between two means may be regarded as nor-
mally distributed about zero (if the hypothesis is true) with a standard
deviation o, and (2} the standard error of the difference estimated on the
number of degrees of freedom provides an independent estimate of a.
Since ¢, in general, is the ratio of (1} to (2), it is the appropriate criterion
for the test of the hypothesis involved herc.

The following calculations and procedures enable us to make the
determination of the f in this particular case (the subseripts vefod L& the

———— AN,
\/.92 Ly L \\
Ny No AN/

Refer £ to the table of ¢ (Table 11, Appendix).

Lot us illustrate by taking théroblem to test if two sets A and B
of test scores from two c]assessiljoalgebra may be regarded to have come
from the same normsa! population. We obtain the following values:

ecorresponding sample): O\
v '\
Xl = 2}\.};1; X-.-g = ._..ng A\ W
1 V2 N
S(X; — X0 + 2(Xa — XD

2 = S L

! TN TN -2 0

f = (Xy — X;):

Ci.’.ass\/ﬁ~’ Class B
N, =34 Ny =30
(@EX, =975 SX, = 795
A0 X — 2868 X, = 26.50
XL Xt = 43274 S(X, — X2 = 2009.5
O - & =X -
N \/E(Xl — X2 + 32X, — X !
AL N+ N.—2 (Nl + f\g)

28.68 — 26.50

\/4327.4 + 20605 1 1
31130 —2 \32 T 30

_ 2.18 _ 0o
A/117.60 X 062745

We enter the t-table in the row corresponding to n = N1 -+ N2 — 2,
to find the probability of obtaining a value of { greater than or equal L0
i't[) in repeated sampling. In the example, n = 34 + 30 — 2 = 2, but
this specific value is not given in the table. [t is observed from the values
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for n = 60 and n = 120 that the probubility of getiing a value of ¢
greater than or equal to +0.802 in repeated sampling is somewhere
hetween 40 and .50.  We conclude, therefore, that the two classes may
he assumed to be random samples from the same normal population or, in
other words, that the means of the two classes arc not significantly differ-
ent. The pedagogical conclusion is that there is no real difference
betwoeen the average algebraic abilities of the two classes as measured by
the test used.

The hypothesis tested above, that the two samples were random
samples from the same normal population, is equivalent to testing, the
hypothesis, 7Ty, that gy = pge and of = ¢}, against the set of &l }he
alternative hypothescs which specify only that w5 p» ov of (65, or
both. General results have been obtained by Sato (Ref. 13/ pagé 1} to
indicale that the {-test iz also the uniformly most pou:c;rfu‘l of all the
unhiagsed exact tests that ean possibly be made for the.fhﬁaothesis, Ify:
In connection with two uncorrelated normal populations, =; and =, it is
assumed us given that o1 and oy have the same (thengh unknown) value,
to test the hypolhesis, that g1 = p», against the st of alternatives that
#1 7 pe. The study of the power function of the t-test under diffcrent
conditions has been made by Hsu (Ref. '1\3):&

We shall next consider a practical preblem which oceasionally arises
when there is evidence to indicatcthat the varianees of the two pop-
ulations from which random sample§have been drawn are unequal and it is
desired to test the significance of the difference between the means.

Problem V.5. The significance of the difference between means
when the variances are ufnequal or unknown, For a precise test of sig-
nificance first given hyBehrens (Ref. 8) for the difference between the
means of two samplés supposedly not drawn from equa.ll_‘yt variable popu-
lations, or from popnlations having a known variance ratio, the Belll'en§~
Fisher method/isavailable (Refs. 7, 8, 9, 22). Its application is made in
the f()llowingikiia,mpic. o

At théend of a certain course in science, two groups, one in L' High
Schoglaanid onc in B High School, took the Peterson Comprehensive
Strem,g Examination (Ref. 18). The following results were recorded:

3

School U: N, =14 X.=17321, (8D, =2153

or (X, — X)) = 6489.5726
School B; N, =12 X, = 5630, (8.D.)s = 16.75
or Z‘:Xg - }-{2)2 = 3366.7500

¥rom these data we obtain:

(0) F = 1.6314, =13, m=1k 30>P>.20
’ (not significant)
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X, - X
®) S, - Xt Z(Xe — X
NNy — 1) NaNz — 1)

{c) For

n = 13, ng = 11, mean-variance ratio = 1.6314 X 3%
0 = tan—' A/1.0814 X i3 = tan~' (1.1826) = 40°47
We enter Sukhatme’s table of the d-function (Ilef, 22). We have
ny =13, n. = 14,8 = 19°47', No d.os (or d.o1) 18 given for these values.
So we must find d.os to it these values. We may interpolate for either
n, OT ng first; the result will be the same result in either case. Here we
shall interpolate for n first. For ny = 13 we get the folldwing d.os

values: '\

? 0° 15° 30° 45° B0° AN T5° 90°
ns = 8 2306 2.208  2.201  2.225  2.199) 2.176  2.170
ny = 12 2179  2.175 ' 2.167 2.163  2,164% 2168  2.170

Now we interpolate for n; = 11 and get the follov.-‘iﬂg .05 values:
=13, ns =B

¢ ‘ 0° 15° 30° 450 60° 750 90°

d; 2.190  2.185  2.175 (269  2.167  2.160  2.170

For 5y = 13, na = 11, 0 = 45° d s 2.169

For ny = 13, ne = 11, 6 = 60°: dhgy = 2.167

Since our observed do = 2,162 is less than cither of these d_os values and
since our value of 8, 49°47 s between 45° and 60°, therc is no need for
interpolating for 8. {in’ow may declare our observed value of ¢ non-
significant at the 5 pereent level.

It is worth notingthat if we had used the usual ¢-test for the hypothe-
sis of equal me&r:lg, tho hypothesis would have been rcjected at the 5 per
cent level. Thus: . _

t Q = Xy s S— = 2121 (5.03)

D \/E(Xl = X% + (X, — X)° (Nl + \)
¢ ) Ni+ Ny —2 NN
Porn =N, +N>,—2=24 P <05

An approximate mecthod for the same problem was proposed by
Cochran and Cox (Ref. 21), & method to test the hypothesis of equality
of means with no hypothesis about the population variance when N1 # N2
and 8; # s2. In this test the variance of each mean is calculated sep-
avately. A criterion £ is obtained by computing a weighted mean of the
two -values for the two samples, the weights being the two variances of
X T — X 7

82,1,
weighted 2-value to judge the significance.

The approximate test has been applicd to the same data analyzed

the respective means. The ratio is then compared with the
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above by the Behrens-Fisher formula, The calculations are sot forth
in Table 20.
TABLE 20

CALCULATIONS FOR THE Coograx-Clox MEeraOD oF TESTING THE SIGNIFICANCE OF THE
Hyrorursis oF Equariry or Muans witrt No Hyroruesis ABory Trm PouPtLaTION

Variawog

R DF. X Zx2 S sz i‘gr, t.D-’tS.?z

., @ (3) {4) (5 (6) ] (8
S N\

14 ‘ 13 73.21 6480 8726 | 409.1059 | 35.6520 2.160 L{TR.0191

12 11_ 56.30 38667500 | 306.0682 | 25 5057 2.20 N 36 1389_‘

26 24 | D =16.91| 9856.3228 61.1577 . Nj133.1571

I y "’}«

Lossz,® + Losfel®
8e:* sk

_ 77‘.019% 56,1380
 35.6520 T 25.5057 N
2T

NS

The criterion (weighted ) =

I

The observed ¢ is caleulated ag fOHQ}sis;r"
X - X% 73.20% '56.30
Sti-%, /358870 + 255057

Since the observed ¢ is less thaQ“t-he criterion {, that is, since 2.162 < 2,177,
the hypothesis of equal medns Is not rejected.  Thug, the same conclusion
is found as in the case of\bhe exact test provided by the Behrens-Fisher
formula, O

Where the sizes8f/the samples are the same, that is, where Ny = N,
the significance/0f the difference between the means can be determined,
even thoughwthd variances differ, by calculating the value of ¢ in the usgal
way applying’ Formula (5.03). However, the {-table is entered with
df. = M 1(= Ny — 1) instead of N, + N, — 2,

Prgblem V.6, The significance of the difference between the means
of chrrelated measures. Situations arise in which the two samples are
equal in number and in which each individual of one sampile cm‘resp_mnds
in some way to a particular individual of the second s:ample. Such 1 the
case, for example, when individuals have been paired or equa:ted on
certain characteristics, in two different groups. One group is then
subjected to one type of treatment and the seconf:i to another. At the
end of the experimental period, evidence is obtained as to w.hetht?r a
differential effect has resulted. In this casc and in others of_ a like kind,
We can use the distribution of ¢ as the theoretical mc.)del‘ It is necessary,
however, to caleulate & in a way different from that illustrated in Problem

= 2,162




76 PROCEDURES IN TESTING HYPOTHESES  [Cmar. V

V.4, As hefore, we wigh to determine whether the two groups may be
regarded as random samples from the same normal population or to test
the null hypothesis that the §wo means are the same.  The individualsin
the two groups have been equated, a fact that must be taken into account
when setting up the model. 1f there is no differential effect, then clearly
ihe differcnce between the criterion measures of the paired individuals
should be zero.

In practice, as has been noted, in taking means of samples from the
same population, the differences will never he exactly zero, cven if there
is no differcntial effect. The distribution of differences between cor-
responding values now constitutes a single sample, for which thomean
difference and the standard error of the mean difference can l;rgi:glcula.ted
in the usual manner. The ratio of the mean differcnee tg\its'smndard
error will be distributed as ! in repeated sampling,..}:icrefore, the
distribution of { is the theoretical model against'wﬁicli to cheek the
experimental results. oN

The following data were obtained in an expériment to compate the
efficacy of two methods of teaching elemepgiwy algebra to high-school
classes. One group was tanght by the gr&ﬁ‘p method, the other by the
individual method. The individuals somstituting each of the 25 pairs
were equated on the basis of intclligence test scores and mathematical
pretests. N

Our problem is to test thewtull hypothesis that there ig no difference
between the two te&ching’mei"hods with respect to the outcomes meas-
ared. This is equivalend to determining from the cxperimental data
whether the mean sdafed on the criterion of the two groups are the same,
that is, whether the two classes may be assumed to be random samples
from the same, fidrmal population. If it iz found that the mean scores
are signiﬁcain{ly' different, the conclusion will be drawn {hat thete is evi-
dence of adifferential elfect between the two methods of teaching.!

The Yo are recorded in Table 21.  We first caleulate the differences
between the scores made by the paired individuals. These differences
afegiven in column (4). We then find the mean of the distribution of

ffercnces:

Mean differences,

~ 5 =D 232
D=%,=20="27 =08

We next calculate the variance of the differences:
s = NzD* — (ZD)*
NN =-1)
- 25 X 8962 — (232)2
(25)(24)
283.71

L i z . -
For a rigorous diseussion of the singlefactor cxperiment, see page 226,

i
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=1

TABLE 21
1 . T o
CarounaTioks ror TESTS oF S1eNircasce OF DIFFRRENCE IS PAIRED UROUPs BY
Two Mevaons

Achievement .
seora Differcnce | (2) — 501 (3) — 50
Pair I
o | _ —_— -
Txperi- | Con- N - e 1
mental | trol o D X 4 Xy xz ! oy
(1} (2} (3) (4 (8 (8] (7) (8} (" ALD)
-+ R Sl S IR s
I 73 1 38 18] 225 23 8 184529 64a
I 52 a7 15| 225 2 13 26 A\l 4 169
I} 100 | 53 47| 2,209 30 3 50 2,500 9
3Y 60 | 77 (17 289 10 27 | 02wl 1000 720
v 75 | 51 24 176 25 LN 25 623 1
vI 67 | 62 3 25 17 12, 204 284 144
ViL 61 | 53 8 36 1 % 55| 121] 25
VIII 59 | 30 20 841 9l 20" 180 81 400
Ix 33 | 396 36 | 17 (NIt 187 2% 121
X 19 16 3 9131 {pad 1,054|  961| 1,156
Xi 32 | 15 17] 289 | 183" | 35 630 321l 1,225
XII 27 | 87 |10 100 423 13 200 520 169
XTI 68 | 44 24| 5763 18 6 108 324 38
XIV 5¢ | 27 27 720 4 23 92 W 52y
XV 26 | 43 (17 A 289 | 24 7 168 576 49
,zm1
XVI 30 | o7 \\*31 9|20 23 460| 400 520
XVII 80 1 534 N6 236 19 3 57 361 9
XVIIT 43 | 208> 14 196 7 21 47 gy 441
XIX 23 |13 10 100 | 27 37 000 729 1,369
XX RIPAS A 36 | 39 a3 1,287| 1,521 1,080
XXI 50| 20 6 36 | 24 30 720, 578 900
XXIT '%U 9 21] 441 {20 41 8200 400 1,681
XXT [W3\N28 | 3517 49 | 22 13 330, 484 225
XXIVS T 53 1 21 321,024 3| 28 87 9 84
XXV, 23 | 42|19 361 | 27 8 26 729 6
Towdl | 1,142 | 010 |82 314|8,062 |200 101|300 59 403 8262 12,536( 11,074
232 —108 | —340 | 7,769
1142 B Gt BN
X = o5 = 15.68 Check: X = 55 —+ 50 = 4568
. —340
7 =A% a0 Check: ¥ = — £ 50 = 36,40
25 25
. 232

) =" =928 Cheek: X — ¥ = 4568 — 36.40 = 9.28
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TABLE 21 (Continued)

Method Method2
o : gy re? -2 oxady
N3D¥ - (SD)? N (S P W 2.1
Tmean — 0 = NEHN — 1] OF-¥ = N + N 'TF W
diff, WY T N mr s A
35 x 8962 — (232)° I Rl s b
=Tz NN — 1)
68 Nza? = NEX? — (ZX)? = (25)(12,526)
=33 — {—108)2 = 301,186
Nzt = NIY? — (ZTY)2 = (25)(11,974)
to = g_'gg d — (—310)% = 183,750
T N Tey = 2NHEXY) — (3X)(ZY)
n=N—1=24 = 2(25)(7760) — (—108)(—330) _
P < .05 = 2.57,505)
or 02 > £ > 01 ~ 815,010 ) X
fog = 2.402; tg = 2.797 NN — 1) = (25)2 (24) = 15,000 4~ )
' [301,486 + 183,200 = 315,010
OX-F T 4 15,000
= +/11.3181 ={3.368
Q.28 ¢’/
=337 N
2.758

N

n = Nt = 24
Py 02> P > 0
NS

An

The variance of the mean is then >\
2 ": "
83t = .S—;\?;‘
e 2B3TL ) 48
& ®
The standard erfb{\if the mean is

L >

o s» = v/11.348 = 3.37

In one ,@g}rﬁtion, the caleulation of 35 is

& JEo Gy
B b NIV = 1) (5.04)
~O _ [524050 — 53,824 _ ..
\ = GO e
Then o = D < 928 _ o 7ssr (509

\{E _?—)2 3.37
NN —1)

Trom the table of ¢, entering the row corresponding to 2 = N ~ k
= 24, we find the chance of gotting a value of ¢ greater than or equal 0
+to; that is, £2.754 is slightly greater than 1 in 100 (Lo = 2.797)
Hence, the null hypothesis is rejected at the 5 per cent level of significance.
We conclude that the two groups can not be assumed 1o be random
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samples from the same normal population, or that the mean 8COres are
significantly different at the 5 per cent level. The educational conclusion
under certain assumptions iz that the two methods of teaching produced
significantly differcnt results,

When a large number of pairs of individuals are used jt may be
advantageous to work with the original meusures, thus avoiding the caleu-
lation of the differcnces.

Using this method of caleulation, the value of £ is

_ X, - X, o
(X5~ X2+ (X, - Xp)? = 2%(X — X))(X, — o)
v NV =T O\

The calculations are shown for the same problem used &0 llustrate
the method based on the caleulation of the differences¢™'his method
follows (with appropriate methods for reducing the maﬁhemati{:al caleu-
lations) the more commeonly used formuls of the standard crror of the
difference between the means of correlated measures?

N
- A Tan e x = x
Tr y = N X \and ¥ =X, .

The demonstration of the equivaldnee by applying the respective
methods to the same set of data is gien in Table 21. It should be noted
that the unbiasced estimate of o2 is}'}ised in both cases.

If we had not utilized the jnfdtmation provided by the experimental
design, different results would have been obtained as noted below. Using
the method for testing, the significance of the difference between the
means of random salee\es as in Problem V.4, we have, since Ny = N 2,

té\—— :7-(1 - X, __
O \/z(xl — X0+ 32X, — Xy?
'S X NV =1y (5.08)
A 9.28

AN vazsgr "

F;;l%éring the table of ¢ with n =2(N — 1) = 48, it is observed
(without interpolation) that we should expect to get a value of ¢ greater
than or equal to +1, ie.,, £1.6 in repeated sampling in more than 5 per
cent of the cases. The conclusicns are, therefore, altered from those
drawn earlicr by the calculation of f.

It is usually advisable to caleulate both £, and {; and make both tests
of significance. Sometimes one and at other times the other may be the
more sensitive. If either one or the other shows a significant difference
betwecn the means, it is safe to accept the conclusion of significance. If
48 18 most often the case in experimental work, the corresponding values
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for the respective paired individuals are positively corrclated, the stand-
ard deviation of the differences will be thereby reduced.  Against this
favoring circumstance must be weighed the fact that in treating the
results as a single sample, the number of degrees of freedom is only half
as great as if the two samples had been treated separately, that is, if
two random samples were used for experimental subjects. From the
findings of the two tests of significance for the same data; & divect statis-
tical measure of the efficacy of the basis of pairing used is made available.?

Problem V.7. The sign test of significance. A simple test of signifi-
cance is available for application to the data in Problem V.6, "Thisis the
“sign test’ or “binomial serics test’’ for the case of randoniizert blocks
with two columns (Refs. 10 and 5). The statistic used 1s g number of
pusitive differences among the differences of the sevewnlpairs of indi-
viduals. The zero differences are usually divided ,(a}-'fz’nly among the
positive and negative ones. Thus: Py = +'s + 28 3The mean num-
ber of positive values expected according to t-he'b'&t'bmia,l sories (3 + )%
is ¢

g =np =123 N
o= \'npg = .5vn=28"
in(Pu-.éo) P\
K] '\/i- " (5091

_ 253 ~ 50)\ " 25(.72 — .50)
5/230 2.5
X may be referred 1o a pormal scale (Table I, Appendis), from which it
is found that P = 0278 or P < .05. The hypothesis of no ditference
between the two g:rbu\ps as revealed by the differences in signs is rejected
at the 5 per cengilgvel.

The methed.differs from the most reliable t-test in using only the
informat-ion’}n’ the sign ag compared with the total available information
in the adtial values used by the latter. The former methad may be
shmyp% e 62 per cent as sfficient as the latter; that s, 62 pairs using the
t-’t@t"would give ag precise results as (00 pairs in using the sign fest.?

\; ~Problem V.8. The significance of the difference between per-

entages. There is frequent need to determine the significance of the

difference between two percentuges. Take, for instance, the following
problem: '

According to one Investigator, 67 of an unselovted sample of 7903 males
and 3 of an unselected sample of 232 females from the same 1nited States
Caucasoid population were color-blind. Is this evidenee of a sox differ-
ence in this trait? The hypothesis to be tosted is

= 2.20

Ifniih =P =7

PR . S . - . R . .
: For further dlsm(l‘ssmn_ of the efficiency of this experiniental design see page 202.
For meaning of “efficicney,” sep page 105, '
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The maximum likelihood estimate of p is

b+
P R+ 7e
where ¢ is the number of color-blind individuals in {he male sampla:
{y, in the female sample,

_ 07+'3 =1-_ _67+3
Po = mo3 a3 @ 703 + 932
o i ] A
Yo M 7 \
Rl - A
Pago (1 + E) A~ (5.10)
[ 3 % Dy
= 9% ;_-T—E__: = 3.8 ™
V(1583) (T855) (735 + 234) 2

(&

Referred to the normal scale, it is {ound that P <“f6}1. Therefore, the
hypothesis is rejected ; that is, there is a significanfsex difference in color-
blindness in the population sampled.4 AN

Problem V.9. The significance of the ~df§éi'ence between the abso-
lute variabilities of two groups. The following problems illustrate the
method of testing the significanece of the,‘giiffel'cnce between {wo v ariances:

(2) I'rom the measurements of Jigights In centimeters of 2518 boys
and 2538 girls, both groups fourt’ii:’cn years of age, the sum of squarcs
of the deviations for the formertwas 180,811.641552 and for the latter
114,896.931496. Ts there af”si‘gniﬁuant difference in absolute varighility ?

The calculations are C{rl;i‘ed out in Tahble 22.

\ TABLE 22
Tor BIGNIFTCANCE Or 7 DirrerExce BETWEEN Two EsTivares op Varlavce

|

‘ Degreﬁé&bf Mean Log mean r 1

Bex Fegdvm [ Sum of squares square square -
—_ \Tx___‘ —_—
Male o8 2517 189.811 641552 | 75.412 | 4 g00g 0003973
Female ) 2537 , 114,896. 9314596 | 45.308 ‘ 3.8133 | .0003942
A, | |
Lhift: Surm:
0.5093; 0007915

The mean squares ure obtained by dividing the sum of Squares by the
degrees of freedora. The difference of the logarithms is 0.5093, so 2 is
0.2546. The variance of z is one-half the sum of the last eolumn, or
.0003957; the standard error of z is .0199,

&
— = (2.8
Tz

*The x? trst is an exact test for this problem.
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Referred to the normal scale, we find:
P < 001

Therefore, there is difference in the variability of the two scxes.®

(b) Two samples of boys were available in a city school system.
One sample of 121 boys of twelve years of age had a mean weight of 72.7
Ib. Fifteen ycars later, another sample of 61 boys twelve years of age
from the same school had a mean weight of 77.74 Ib.  The mean squarce
of the weights (Lb)? of the first sample was 141.60 and that of the second
sample, 95.756. Is the difference in variability significant?

The caleulations for the test of significance are seb forth :'ln Fable 23.

TABLE 23 )
Tre z-TEsr OF THE SIGNIFICANCE OF THE DIFFERENCE BETwmﬁxj\Twn VARTANCE
ESTIMATES -\

R

LS 47N

_ rees [ ettt menn sadd
Sample Degrees of ‘ Neight mean s.c;.m}s‘ré 1 log. (mean square)

freedom )2
:‘{\ 7 - —
1 120 1417600 2.4765
2 60 WJ05.756 2.2809
20 = 0.1956

We enter the e-table of Either (Ref. 10) with ny = 120 and n; = 60
and by interpolation find that 2.0 = .1917. We could enter Table 1V,
Appendix, of the va{ri&ﬁce ratio, ¥, with n; = 120, np = 60, and Fo =
é——i%gg = 1470, add{find Fo; = 1472

Since 2, is ghightly larger than z.gs, or Fo slightly larger than Fos, We
conclude t a,i;'\the difference in variability in weight between the two
groups ofBays is significant {at the 5 per cent level).

Pg@\@lem V.10. To test the homogeneity of a set of estimated vari-
anoe§ The statistical analysis of data often involves the ealeulation of a

JJiimber of estimated variances and the testing of whether the sample
\_gstimates are gignificantly different. Three tests of homogeneity of
variability arc described here.

Neyman and Pearsen (Ref. 16) used the eriterfon L, the ratio of a
weighted geometric to a weighted arithmetie mean of the mean squarcs
from which the variances were estimated, in order to test the hypothesis,
I { 1!

gL =0¢s = """ 06 =0

This is the test that these & independent samples have been drawn from
normal populations having a common standard deviation.

& The near normality of 2 for large and equal valucs of n, and na {see page 55)
has been the basis of the test used here. Fither the ztest or the varianee ratio
could have becn used.
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Welch (Ref. 21) indicated how L, could be generalized and how the
weighting for the different sums of squares could be modified. Nayer
(Ref. 15) computed tables of the 5 per cont and 1 per cent probability
levels for Iy for the ease of equally sized samples. He also considered
bow far, in the case of unequally sized samples, the probability levels for
L, might be obtained from his tables. Nair (Ref, 14) investigated the
form of the true distribution of L.

The tost prosented here is baged on the modified formula of Welch
and the use of Nayer's tables of the L-distribution.

Welch’s equation i Q.
DI ) ~
Ly = H (m) {M] (\B.1)
'\
where ¢ = 1, 2, - + -, k; I denotes product; = denotes ~sﬁrﬁ‘hmti0n; Mgy

the number of individuals within the sth sample; Z}'\‘thc number of
individuals in all the samples; and 8, is the sum ofsQuures of the errors
or the residual of 4 sample. In the case consider\'qc} here,

A\
=E(Anv~ £

oy

where X, represents the value of thg t 'mate for the 7th individual in the
sth gsample and X, represents the Ih'oln of the sth sample.

-

Nayer's tablos are entered \\’]fh k, the pumber of samples, and 7 = i;:i,

the average sample sizd \Hartlcy (Ref. 12) later indicated that the
geometrie rather thanMhe arithmetic mean should be used when an
average of unequa]ly\sﬁed samples 1s needed.  Tn using L-tables, rejec-
tion of the hypothégis, H,, is indicated when the obtained L, is cqual to
or less than the<dbled values of 1 at the respective 1 or 5 per cent level
(Table V, A@endix)

The second test of homogeneity of variances was given by Bartlett
(Ref., 2) N He suggested a test analogous to the Ly test in which the sums
of ¢ 9(}1{&?% are weighted with the appropriate numbcer of degrees of freedom
instead of wilh the number of observations ag in the Neymun-Pearson
criterion. Thus where s is the unbiased estimate of ¢f based on a sum
of squares having », degrees of frecdom, and there are % indcpendent
estimates, the test function is

E
~2log. p = N log, [2 (“5“)] 2(?); log, D) (5.12)

N = 2 (v;)

i=1



84 PROCEDURES IN TESTING HYPOTHESES  [Cuar. V

and natural logarithms to the base e are used. Where none of #.’s are
too small, —2log. » is digtributed approximately as x® with & — 1

degrees of freedom if the et =1,2, -+ -, k) have a common value.
Bartlett gave a corrective factor, C, for small samples:
L l - l 5,12
C=1l+33—7 0. N (5.12a)

i

He indicated that the quantity

-2 lgw followed approsimately the

same x? distribution. \

Bishop and Nair (Ref. 4) demonstrated that even in usitn@ lbe correc-
tion factor C, the x? approximation is not altogether satisfaclory if some
of the degrees of freedom, w», are 1, 2, or 3. Lat@gf;}lartley (LRef. 12)
derived a method of approximating to the disthibution of Rartlett’s
—2 log, g, which was shown to be suﬂ"lciently‘}cecurate to permit the
degrees of freedom to drop to 2 with a fair approximation even if some
of the variance cstimates based on 1 deg.sbe‘ of freedom are among the
L-values. In Ilartley’s method the }‘arﬁb‘ability integral is represented
as a weighted mean of x? integrals./\Phompson and Mennington (Ref.
23) have published tables of theGriferion called 37, based on Hartley's
approximation. R \\

We shall illustrate the thrge'tests of homogencity of the variances by
applying them to the same set of data.

In Table 24, colurpadithree is given & set of five estimates of variance,
caleulated from ﬁ\g{éafnples of intelligence test records of pupils in five
different grades »f a given school. It is desired to test whether or not
there are any(real grade differences in the test score dispersion of the
pupils. To(this cnd the caleulations in obtaining the value of the
criterionedify are set forth as shown in the table.

O TABLI 24
CJA\LQ'ULATIONS ¥oR OBTAINING TOE VALUE OF THE (RITERION ror DAmTLRTT'S TREST
...\3 of TAE HoModeNEITY OF FeTIMATED VARIANCES
N ® ®) @) @ ®) @
No. of ¢ Intelligence
Gr?de pupils varlance In log, mt e log, &% l
e %? (score®) v
3 a5 59,5345 34 4 .086506 138.94304 0.02941
4 a7 984360 36 4.58942 165.21012 0.02777
5 33 1051378 a1 4 63327 158.27018 {.02041
4] 36 138.3325 35 4 92866 172.53810 0.02857
7 a7 39,4520 36 3.67509 132, 30321 4] .02_7ng
Total | 180 175 = N | 767.28268 | 0.14218
| I
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We obtain further:
It = 15,404.4960
Zfmsl) _ 15,404.4960

S T A
v 0l
log. 2;;“1 — 147763

Following (5.12), we obtain
~2log, g = M, = 175 X 447763 — TG7.28268 = 16.3026

Entering Table VII of the 1 per cent points of the M -distribugien
(Ref. 23) with & = 5 it is found that all enfries opposite k£ = 5 areNess
than 16.3026. Without further caleulation, therefore, it may{ be)con-
cluded that M, = 16.3026 is significant at the 1 per cent levell \We may
infer that a significant difference exists in the mtelhgumu da"spemlon as
measured by this test, among the five grades,

Bince the tables of the M distribution are not as x e’o}t adﬂv accessible,
the test may be made by application of (5.12} andN\512a). Thus:

AY;

{vss}) _ 15,404, 4960, \

¥ 175 $8.0257
o
Yoo &
N IOge;LNM = 19B(4.47763) = 783.58525
a K
(v, lo ‘»’ = 767.28268
& f“’\i
1 L i
, _ (783 o§5?5 = 701, 28208 _
Xo 10iT4d 16.118

,\

We en‘ter the x*table (Table ITI, Appondix) with & — 1, or 4 degrees
of fre,gdo}n We find that our obtained value x3 is larger than the table
valle, X = 13.277 at the one per cent point.  Therefore, we roject the
hypothesis, Iy, and conclude that a significant difference exists in the
variability of intelligence test scaves among these five grades.

it may he pointed out here that Bartlett's test would appear advan-
tageous in comparison with the Li-test when the size of the samples is
much larger than n = 60 (the limit of finite values as given in the Naycr
table] and an interpolation between 60 and infinity needs to be made.
Bince the range of the Li~-values Is only frem 0 to 1, the test is not highly
sensitive,

The tables of the M distribution may encourage the use of Hartley’s
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approximation, which is likely to be more convenicnt ag well as slightly
more aceurate.

We now apply the Lr-test, which i1 made as follows, Lo the same data
as in Table 24,

We calculate first the value log L from Trormula (5.11). The caleu-
lations are set forth in Table 25.

TADLE 25

Tas CALCULATION OF LoG Li For THE Li-Tust OF JIOMOGEKEITY OF YARIANCES

F I log #y 7y I0g e #s ¢ log 8. Thy ng &,
|
i 4 ‘\
35 | 84| 1.5241 2,024.1714 | 3.3062 ™
37 | 36| 1.5682 3543.7207 | 3.5%5
35 | 34| 1.5441 3,574.6857 | Bb552
36 | 351 1.5563 4,841 .6380 |48, 6850
37 | 38| 1.5682 1,420 .2703¢] L3 1524
N =180 | 175 | S n. log ne = 280.1606 | 15,404 49G8’ En Tog &, = 620.7093
o \
5 ':..\\, | B

log L; = log N — _% 7, log n. K %}2 n. log 8, — log (2 3;)

— log 180 — 1i5(280.16DB) -+ 145(620.7093) — log (15,404.4960)

= 2.25527 — 1.55645 4 3.44838 — 4.18769
= 1.95951 Q
Ke)
We find that Iil\oo\responding to the logarithm 1.95951 is .911.
E=5; :‘}]i;rmonic mean of f, = b
XS e TE TR FE TS

Q" = 34.98
A\

We énter Nayer’s tables (Table V, Appendix) with & = 5and f = 3b
ws\u'lti'note that our value, .911, is less than the interpolated 1 per cent
valtie of L. Therefore, we reject the hypothesis and infer thatl there iga
Ycal differcnce in variability in the intclligence test scores among the
five grades.

Problem V.11, The significance of the difference between two cor-
relation coefficients. The following product-moment coeflicients of ¢ot-
relation were obtained between scores on fwo examinations in algebra
administercd at the end of the school year in May and at the beginning
of the next school year in September.  These resulls were obtained by
s mathematics teacher in two different schools:

School A o= .73; . = 59
School B: e = 62; g 48
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Is there a significant difference between the two corrclation coeficients,
riand 7?

2 = %loge} T

—

Rog, (1 +.73) — log, (1 — .73)]

[log. (1 + .62) — log, (1 — .62)] ~

T 1
\/mJFFT—_a WO

9285 — 725 - R4
= 45 X )
T V& &

We enter the normal table (Table 1, Apgjb}ldix) and find that for
2= 45, P> 05 We, therefore, concludenphat there is no significant
difference between the two correlation coéffidients.

Problem V.12, The significance pfthe difference between correla-
tion coefficients determined on the saﬁﬁe sample. The following produet-
moment coefficients of mrrpla,twn were obtained in a class in coliege
biology, consisting of 73 s*tudpntq

Ty1 = .30, the vorre]zmt1¢4f1\ cocfficient between scores on a test on
vocabulary (1) and seo es\tm a test for interpreting various situations
dealing with states of h\‘rh and disease (1);

rye = 42, the cOrreIatlon coeflicient between scores on a test of
biological pnncu\I (2) and scores on test (¥);

r12 = 603 4he correlation coellicient botween tests (1) and (2).

The pmk\{}em is to test the significance of the difference botween the
Gorrelatmn coefficicnts, ry and v, Since these correlations were
obtglned ‘on the same sample the procedure described on page 54 is

f oliqv“ea :

(g — 1)V — 3)(1 -+ 712)

F = 2(1 - ?'?2 — 7'51 - ?'5—2 + 27‘L2Ty.1?y2)
o (30 — 42)%(73 — 3)(1 -+ .603)
b =

I — (603)F = (B0)F — (.42) + 2(.603)(.30) L42)]
= 1.55
We enter the table of F (Table IV, Appendix) with »; = 1 and
= 70. We find that our value, 1.35, isless than I 5 = 3.98; hence Iy
iz not significant. We conclude that there is no significant difference in
the two correlation coeflicients.
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Problem V.13. To test the significance of a regression coefficient,
In a simple regression of one independent variable, an important test is
whether the regression coeflicient is significantly different from zero, or
the test of the hypothesis that there is no regression of y on z in tho
population sampled. For the required test the theoretical model against
which the experimental results may be compared iz the f-distribution.
The value of & is caleulated from the sample and the table of £ is entered
with # = N — 2 to determine the probability of getting a value of ¢
greater than or equal to i in repeated sampling. Here L I8 thoe ratie
of the regression coefficient, byz, tO the standard error of by.; t.ht;t\ is,

b, N .
to = ?Jf ' \' \) (5.13)
"I'he standard exror of b is given by G\
v (5.14)
(8.15)

in which ¥, is the observed vifuc of ¥ and Yz is the value of ¥ estimated
from the regression equdbion. The nmumber of degrecs of frecdom 13
N — 2, since two statigtics arc estimates of two different parameter
values in the Tegression equation: ¥s = a + bw.  The caleulutions and
procedures are illhetrated in determining the regression coeflicient and
in testing its)ignificance in Table 26.

This problem was that of setting up a regression equation for the
purpose oy predicting a knowledge of onc character Y, from & knowledge
of a sédond character X. In this case it was desired to predict the seore
of ;ait* individual on one form of an examination from his score on the

'"‘.i;e{:tmd form. The prediction equation is

Vo= ¥+ 20 (X - %) (5.16)

This equation is called the regression equation for estimating Y from X
It is ﬁttcgi to the chservational data by the method of least squares.

_ In this regression problem, it is neccessary to run two tests of sig-
nificance: (1) for the regression coeflicient b,. and (2) for the mean of the
dependent variable, Y.

The test of significance for the regression cocfficient, bz, is iven by
bg’rz

Y

t:
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In our problem the values are

to

0873
0729

= 13.5

We cnter the table of { with n = & — 2 = 25 — 2 = 23 and find that
Therefore, the regression coefficient is highly significant.

P <.

001,

TABLE 26
CALCTLATIONS FOR Bu1TING UP THE REGRES-
510N EQUATION DETWEEN THE Scorms oN Two
Forxs oF A Trer

Indi- ot on e o lor| X =50 443 =53.24 &
vidual X LN ID S 4 P SRR G P 0 = mean of X &eqles
¥ =504 47 = 51.88 (\H
= mean off ¥ Beores
| 46 52— 4 2 16 4— 3 Tetr =X — X and \="Y ; r
2 | 38 asl—r2 —rol 4 14 WAl o _ Sr s (DX
5 | 6+ 63 12 13 196 1| 182 [ = IE T X7 G - g
4 | 78 65 23 15 520 223 343 Fa
5 4 61 a8 11 8 121 64 88 = 4185 <S58
] ?4 33[—14 —17| 256 28 272 = 4195°)262.44 = 3032.56
7 57 44 7 — 1| 49 1~ 7 9.\ (472
8 | 66 630 16 13 256 1691 208 | Ty = 0¥~ ~5-
9 | 28 2425 —26 625 676 650 \® e
10 | 30 26[-20 —24 400 576 480 | (D 03 — 88'(‘1?}(7}(45;4364
11| 45 83(— 5 —17] 25 289 85 | may= X'V - 20T
12 | 738 71 28 21| 5290 441] 483 |5 25
13 45 48— & — 2 25 4] 1ey” = 4085 — (81)(47)
14 | 55 3] b 13 25 160M.365 25
15 | 66 70| 16 20 256 4@q 320 = 4035 — 152.28 = 3882.72
15 49  48/— f — 4 1 {4
17 64 65 14 15 1960225 210
18 45 46— &5 — 4 %ﬁ i8] 20
19 | 61 62 11 12( 121 144] 132
20 | B2 A8 2 ) 4 16— 8
21 | 67 68 170'GR| 229 324) 306
22 t 59 530 LN 3 &1 6 27
23 | 85 5h .\‘:? a 25 25) 25
20 | 5L BRJI g 1 4 2
25 | 50 {98 0 -2 0 4 ©
Total ‘133,\1:'01297 81 474195 4403‘4035
sl ) |

X}\kn}l Y arc scores on two tests.
— 50 and ¥ =Y — 30.

X=X

Regression Equation
Ye=¥ + 2 (x -~ %)
pat i

3882.72
u— —_—
= 51.88 + 25
51.88 -+ 9873(X — 53.24)
51.88 + .0873X — 52.56

0873X — 0.68

X -

53.24)

Significance of Regression Coefficient
Tua 457 457

T TV Ta /308356 627

0729 = standard error of the regression
coefficient

9873 .
t=m=133~1‘7<.01
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TABLE 26 {Confinued)

Stgndard Error of Estimale Test of Significance of §
. [ Zayi® g V'
20— = ——
. [Z(¥y — ¥x)? P 8
v = N = o S Y, — V.
N2 N -2 where s = \ 20 = Vil

n—2

f [3R82.72)%
4314 .64 — T3035.56 n=mn —2
- 23

[i314.64 — 3833.51 la%1.13 —

- . 2 o 2 /20,9189
N 23 V=V

= 4.57 = standard error of estimate

N\

A simpler altcrnative fest of the significance of the rograssieh coeffi-
cient can be made, where the correlation coeflicient, v, ’igﬂ\'fwﬁilal\ﬂc and
under the conditions indicated below. .\

When the regression of i on & Is linear and the &T‘Kﬁ}’;ﬁ of ¢ are normal
and homoscedastic® (see Ref. 11), the i-test affordsdhe exact test of the
significance of the deviation of a sample regred&ion cocfficient from uny
hypothetical value (specificd by the hypo‘%usis tested) divided by an
estimate of its standard error, considered @84 random sample of similar
estimates in repeated samples with theceame values of .

When the hypothesis under testiis'tha.t the population value, p, I8
zero and when the distribution of X448 continuous, the &-test for by, is also
an exact test for the sample (:ql:'zjélei.tion coefficient, r:

o2 VN -2 (5.17)
O b VL=
This equality is iquE}R\ELt-ed by calculating r for the set of data in Table 26.
Thus, with r =047
N7, 9873 94 /73
ol i v A v

Ente;irié the t-table with #n = 23, it is observed that P < .001. There-
fopeqwhe observed value of b (or 7) is highly significant.
\0\ For a test of the hypothesis that two regression coefficients by and bs,
btained from two random samples of sizes N1 and Ng, are from the same
population, {; i8 given by

N . (5.18)
s" _..1_ + _.l._
Xaf 1 Zal

(Y — Ye)? + (¥, — Va2
N+ N, — 4

= 13.5

2
where & =

(n=N,+N.— 1) (519

8 IPor tests of linearity and homoscedasticity, see page 241,



Cmsr. V] PROCEDURES IN TESTING HYPOTHIESES 91

As an alternative, the significance of the difference betwecn the two
correlation coeflicients could be tested as in Problem V.11,

Problem V.14. The significance of the mean of the dependent vari-
able in a simple regression equation, The same set of data used in the
preceding problem may be presented to illustrate the test of significance
of the second estimate in the regression equation, the estimuate of any
hypothetical value e. In this case the {-distribution may alse be used.
The sample value of {; is

g = :"—Z) VN (5.20)
- - ] p
where s = EEE[; Ys) (5:21)
.s'\‘ - 2 A
oA
Then for this sample and where a is specified as zero, fo becofés
_ 51.88 /25 _ S
to—-‘—’-m—'——-56.7 ’: (n=N—2)
Obviously, P < .001. )

Applications of the Chi-Square Model. Thé Chi-square (Ref. 21)
mode] has wide application in statistics, papﬁkﬁﬂaﬂy a3 a lest of wig-
nificance in dealing with enumerative data-Bo Characteristic of the study
of attributes. It is appropriate for testing whether a set of observed
values differs significantly from thosegchich would oceur if some specified
hypothesis were true. One generaliﬁnéﬁhod of testing such a hypothesis
iz to work out results which wou}ii ‘he expected theoretically and then to
compare these with the ohsexvations.

Problem V.15, To test the effectiveness of principles of classifica-
tion. We may have indiwiduals classified by two characteristics and wish
to test the hypothusis%*at the characteristics are independent or that the
principles of classification are independent.

In applying(ble x*-test to two or more classifications, usually the
statistical hxé}thesis under test s that the two characteristics upon
which the mdividuals have been classified are independent of one ancther,
and t-hgnf’t}e fruth or falsity of the hypothesis is fested. This procedure
is cgutvalent to determining whether a set of obtained values differs

{ziticantly from those which would result if only chance factors were in
optration.

In the following example the x2test is applied to a 2 X 2-fold con-
tingency table (Table 27).

Here 366 twins have been classified on the basis of two characteristics
according to (1) their genetic vonstitution, that is, according to whether
they are identical or fraternal twins, and (2) the presence or absence of
mental deficiency. The numbers of identical and fraternal twins are
recorded in the marginal totals in the last column of the table of observed
values. The number of concordant and disconcordant twins with respect
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to mental deficiency is given in the marginal totals in the last row of the
table.

The x*-test is applied to determine the independence of these two
factors. The gencticist or psychologist might state the problem thus:
Assuming that the data are accurate, homogeneous, and unsclected, with
what frequency could so large a disproportion between the two classes of
twins arise if the samoc causes leading to mental deficiency had been
operative on the two?

TABLE 27
CONCORDANCE AND DISCONCORDANCE IN IDENTICAL AND FRATERNAL ’I‘WIRS FOR
MENTAL Derciescy (After Rosanofl, Ref, 200

O
Observed values A\
Type '
Number Number Total
coneordant | dizeon cordauib\ - <
Identical twins 115() | ) 126
f_‘_l:;l_tern:-ﬂ twins 128(c) i N P?(__Ll)__ I 210
Total 243 P AN123 i 366
PO i
g W i
R :’: ’ Expected values
Pl'!ypc 05“ |
, u\'u\nber ‘ Number Total
’\‘&p’ﬁcordant . disconcordant ot
Identical twins AN 83.66(a) . 42 34(h) 126
Fraternal twingy ™ 159.34(c) l 80 #6(d) 240
Total \\ |! 243.00 ; 123.00 366
AN ;

X Fhs number of ohservations to be expected in each eell where only

hipte factors are operative can bo ealeulated from the total frequency
in"this way: Multiply the total number of identical twins, 126, by the
total number of concordant twins, 243, that is, 126 X 243 = 30,618, and
divide this product by the total number of twins in the sample, 366, that
1s, 30,618/366 = 83.66. The expected number in the other cells of the
tables can be caleulated in the same way. This need not be done, how-
ever, In a 2 X 2 table. Since the marginal totals arc fixed, the expected
values for only one cell need be caleulated, the others being filled in by
subtraction. Thus, the expected valuc for ccll b is 126 — 83.66 = 42.34;
that for cell ¢, is 248 — 83.66 = 159.34; and that for cell  1s 123 — 42.34
= 80.66.
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x® is given by the formuls,

where fp stands for ohserved frequency and f, for expected frequency
The square of the differences between the observed and expected values
Is divided by the expected value for cach cell. These quotients are
summed to give y2

'The caloulations for the ahove data are presented in Table 28

TABLYL 28
Twue CaLcULaTion or x* vOR tHE Dava 1N TasLe 27 ™\
| | l [ A
. ' (Rwy— e
Call Fo } S ‘ (Ffo — 72 ’ (fo — fu2 | \—]J'-T'Ji -
T\
a 115 83,66 31.3¢ | os2.4056 1174
b 11 42.34 —81.81 | 482N056 23.20
e 128 159.84 | —sr .34 482" 1956 | 6.17
) d | u2 | s0.66 | L34 (NB82 1056 | 1218
Total 366 | 366,00 | 00. N xo? = 5320
| K&

The caleulated valye x§ 18 used to detdrinine the probability of getting,
on a random sample, the value of x2 eq! al*to or higher than xZ in repeated
sampling. The alternative is the probability thut the difference between
the observed and expocted valugsimay be altributable to chance alone.
This probability is obtainables{rom Table LIT, Appendix, Distribution
of % The number of degl;(;e‘;'s of freedom with which the table is entered
is in this problem equale $0, since it was observed thut only one of the
cell frequencics could ke Blled in independently, When this quantity is
specified, the other eels can boe filled in by using the marginal totals,

Therefore, we ENter the x*-table with a value of x2 = 53.20andn = 1,
It is noted thgii{fbl: values of x? greater than 10.827 the probability that
the differentes’between the observed and obtained frequencics could
have arisen\by chance is < .001. The table does not give the valuc of P
for a valtre of x*> = 53.20. Tho probability, however, is much less than 1
in 20007 Hence it may be coneluded that the system of classification
used ¥n this problem was effective, or that the iwo basic characteristics,
type of twin and mental deficiency, are associated.

It may be pointed out that ins 2 ¥ 2 table the value of ¥2 eould have
been obtained directly from the formula

2o (d—bo)Matbtctd)
IR CE N e IR )

X (5.23)

In our problem,
. [(15}(112) — (11)(128)1%(366)

0 (126)(240)(243)(123) = 53.29
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The correction for continuity, devised by Yates (Ref. 25), is useful
for extending the application of x*test of significance to conlingeney
tables with small frequency, that is, to data in which the expectations
arc small. Cochran (Ref. 6) has presented and illustrated the principles
involved in correcting for continuity on some applications of x*

The process of calculating x* for a 2 ¥ 2 table can be extended to the
gencral case of the r X ¢ contingency table. In general, in a table of
r vows and ¢ columns the number of degrecs of freedom in x2 is (r — 1)
(¢ — 1). DBartlett (Ref. 1) devised a method of caleulating x* for
multiple-dichotomous tables, that is, those of the form 2¥. Norton
(Ref. 17) presented and ilustrated a method of successive approsimalion
for obtaining the R departures from expectation in a complex centingency
table of the form 2% X R. 8 )

Problem V.16. To test the homogeneity of two or gofe frequency
distributions. A useful application of the x*-test G8\In testing the
hypothesis that two or morc frequency distributionsgauld have come from
the same homogeneous population. This is a Wokce stringent test than
those tests of the significance between certairksummary statistics of the
distributions, since by it the distributions,ffe compured in all respects.
Furthermore, it is possible to scparatd(th contributions to x? of the
individual degrees of freedom, and so'td test the distributions by parts.

The following example illustratés the case where there are two dis-
tributions and @/ classes with /e degrees of freedom.  The method of
calculating x? devised by Brandt and Snedecor (Ref. 11) is followed.

"The two samples are distributions of two groups of freslunen entering
a particular college of, flig* University of Minnesota claszified secording
to college aptitude-tésp rating. One distribution, of 475 studenls, pre-
sented two units 6f high-school mathematics; the other, of 111 students
presented thred\imits of high-school mathematics at the time of entrance.
We wish to téstthe hypothesis that these two samples are from the same
homogene&us population with respect to aptitude as measured, or whether
there}g{a\signiﬁcant difference hetween the two distributions.

Jisve denote the eolumn of frequencies of the group with two units
% ', that of the group with three units by e, the value of x* is given by

e formula
1
X = 77 (z {ap) — ng)) (5.24)

where p = —&
" (a+a)

— 1
P i

The calculations of x* for the test of significance of the homogeneity
of the two frequency distributions are given in Table 29,

For a x3 = 30.96 with n = 9, we enter the x*table and lind thut for
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TABLE 20
CarorLaTioN oF x2 ror Two Frruquencey Distrisuriovs—Oxs wite Two Unirs
or Hieu-Soaoon MarHnmaTICs, THE OTHER WiTH THHEE, GROCPED ACCORDING TO
PrroewTine Rangs ow 1w CoLrEGE ArTitune TmsT

. Units of high-school
Class intervals mathematics @
in : P = m, alP
pereentile ranles Two : Three !

| (@) (@
01-100 18 | 10 857143 3.571430
81- 90 33 12 . 266660 3.100002
71- 80 39 14 264131 3 eug{ls
61- 70 43 3 LB5208T7 1 956361
51— 80 30 13 L 250000 332350000
41- 50 51 3 055550 70N 166650
A1- 40 47 12 .203300 L W2, 440680
21- 30 6 14 AFS000 NN 2.450000
11- 20 68 8 SL0S263N 0.842104
0- 10 Tl 22 __2_5£§5§_\_ 4204208
Total 475(n,) | 111(m) 88420 1 25.779520

:'\\: P Zap
1 &€

2ot N rop mmazeq
xo® = (012)8L058) (265770520 — (111)(.18042)]

= 30.955,3-&? < 001;for n =9, ¥%on = 27.877
values of x? greater than 27.877 theldivergencies between the obscrved
frequencies in the two distributigis*eould have arisen by chance in less
than .00, We do not know the valuoe of P, corresponding to a value of
x? = 30.98, but the probabmﬂ'{ty of such a divergence arising by chance i
fess than 1 in 1000, Welmiay conclude, thercfore, that there Is a sta-
tistically significunt ‘d\iﬂcrence between the two distributions. The
pedagogieal conclusiguis that groups presenting three units of high-school
mathematies areguptrior on the whole on the College Ability Test to the
groups preser;j&i?g“two linits.

It is pg‘sé'.b e to separate ihe confributions to x? from each of the
individqa.l‘a‘egrccs of frecdom, and g0 to test the distributions by parts.
Forvd degrees of freedom the calculations for x* are

S

N
£ b D
Pavdentile tanks

on College Two units Three units ] Total P
Aptitude Test l
81-100 51 i 22 73 .3013870
61- 80 82 i 17 09 AT
41- 60 90 16 106 150043
21- 40 113 26 ﬁ 139 187050
1- 20 139 30 . 169 177515
| 111 | 588 | -180420(P)

Tatal 475

x5 = 7.3438
~P > 05
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For 1 degree of freedom:

|
PRCAT. | Twounits Three nnils | Total

o
Above 80 PR, | 51 22 73 i .301370
80 and below __‘_ 42t | g 513 |- 173490
T Total -| 476 111 i 586 ‘ .189420(P)
xi = 6.8066
¥y = 6.635
Px2 < .01 A

The portion of the distribution contributing the most{orthe differ-
ences is, accordingly, in the highest percentile ranks, ox 841007

Problem V.17. To test the agrecment between al theoretical and an
observed distribution. One general method off fdsting a statislical
hypothesis is to work out the results whicl 3ould be expected theo-
retically under the assumption that the hymjthesis is 1rue, and then to
compare these with the observations. Thérchi-square test provides an
officient test of the goodness of fit. JAG¥n illustration we shill test the
hypothesis that a set of data preschtéd by Roberts of al. (Ref. 19) is
described by a Poisson series, o3

The data given in Table 3(1’;6ére obtained in administering the Binet
Test {a shortened form) to wsgroup of children who passed all hut one

P4\

A\
e TATLE 30
Avnrmionan TEsrs FANE&D on DOWNARD BXTENSION 0F THIE DINED SCall T0 4
O\ BamrLy oF 131 CHILDREN
.\’ Mg (After Roberts, Let. 14
N nb"@;‘:}f" Observed Expected
e é E'a:ile d frqutzncy, frequeney, ® . x1T
3 ] §
o) ' T T T
\ y 0 88 87 .41 0.004
1 a4 35.37 (.053
g 8 7.16
1 0.97 .
o 0
4 0 010 0.07
. 5 0 0.0i S
"Tatal 131 131.02 ey

* The theoretical distribution is obtained as follows:

7 The reduction in the x®-values with coarser grouping of the fata i noled. This
result is to be expeeted with the reduetion in the number of degrees of freedom and the
corresponding approach to the zero tail of the wi-distribution.
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TABLE 30 {Continued)
L. Culeulate the mean number of tests failed: § = £ = 040485,
2. Caleulate the expected frequency. This is done by means of logarithms.
Thus:
{nantity Logarithm Expected frequency

no=131 2.11727
o s gihdlad (m 10g &)

I

{.4046) (. 43420) 0.17571
njem 1.04156 87.41
m = 04046 460703 — 10 ’
mnen 1. 54830 35,37
m 9.60703 — 10 R
1.15562 N\
0.30103 O\
m¥n/2en 0.8515 7.185,
m 9.60703 — 10 v N/
0.46162 -
0.47712 K7,
mPn/(2)(3)em 9 95450 — 10 N 0,965
m 9.60703 — 10 v
9 ROI53 — 10 )
060206 s\\“
mAn / (2)(3}{4)em 8.08047 ~JO\N 0.0076
m 9.60708 £ T
8. 50650\~ 10
0.60%9%°
mEn/(2)(3){1) (5)em 780753 — 10 0.007808

Nyt

T Chi-square = determined i(‘thc usual manner by ealeulating l(fo—_fi‘ The

classes from 2 through 5/have’ been prouped because of small | requebnf:ies. This
grouping could have been™dime without caleulating the (heorciical values for the
classes beyond the thigdy The caleulations were made to illustrate the method.
x? = 0.127 with @21, The corresponding probability value is .70 < P < 80,
There is 1 degree ¢fMréedom, sinee the sample mean has been used as the purameter
of the Poisson difdgiBution and the sample number has been nsed to caleulate the
theoretical [reqifanties.
O
of a cg@,ﬁlete year of tests, then by cxtending the testing downward to
detexmine how many of these pupils failed in one, two, or more tests,
P\Ffom the calculations it is noted that for a x§ = 0.127 and with n = 1,
the corresponding probability is between .70 and .80 Thercfore, we
may conclude that the Polsson distribution provides a good fit to this

set, of data.
ProoLEMS

1. The following are two distributions A and B from the Miller Anal-
ogies Test. Determine whether they are random samples {rom the

same population.
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A B

8 53 43 70 5 T 48 66 50 65 75 48
51 56 99 57 75 67 47 53 89 79 53 79
80 88 76 84 48 8O 67 75 76 60 75 62
77 69 8 8 8 T 75 54 6% 78 48 96
6 72 TL 2T 48 90 76 73 76 67 89 84

92

2. The following data arc from an cxperiment comparing the relative
cfficacy of two differcnt methods of teaching beginning high-gehool
algebra. There are X X1V pairs of students, paired on the basis of
chronological age and a pretest in arithmctic. There were two
eriteria of achievement: (1) scores on an inventory test, (2} scores
on an achievement test. The values under “Exp.” and ¥ Con.”
refer to the experimental and control groups, 1‘e:~;1'mcti\-'{31\y\ Test the
null hypothesis in this experiment. K

Data ¥or PROBLEM 2

7

s
N

'\

Ny

Chron, Age i Arith, Inwemsary Achievement
Pairs -— -
Exp. Con, Exp. Con. ’.\E‘/xp. Con, Fxp. Con.
) N\ _ _

I 152 157 99 (U8 5T 57 50 33
i1 172 157 87 87 61 67 32 20
IIE 173 177 855 86.5 60 62 24 28
Iv 169 166 W85 86.5 55 55 28 19
v 180 156 |85  86.5 30 50 33 23
VI 168 1624 82.5 82 50 50 31 28
VII 171 189\ 96.5 97.5 56 57 36 25
VIIL 160 {57.6’ 92 0l 56 36 43 31
IX 17‘7\1 1 83 86 60 G0 33 21
X 1B5 161 85.5 86.5 57 56 33 21
XI st 165 87.5 8.5 57 56 38 27
XII 10167 161 84.5 83 56 56 28 28
KITT SO 96.5 96 57 57 35 20
XIV \ 168 169 99.5 99 50 51 42 24
XV N 175 177 83  80.5 56 56 29 a7
XVIay 172 175 a3 00 36 506 41 18
Xy 169 170 §1.5 70 56 57 35 20
“XVELL 181 167 90 BY5 56 56 36 26
\3ix 165 171 87.5 875 | 56 36 28 28
XX 174 168 a3 85.5 56 56 20 27
XXI 176 175 93 ™ 51 50 20 29
XXTI 170 165 77 705 42 50 42 29
XXIIL 174 172 77 7.5 56 38 20 24
XXIV 174 170 86 8 50 30 38 30

8. (a) In Problem 2 determine the statistical significance of the differ-
cnces in achievement of the two groups by only considering the
signs of the vespective differences between the scores of individual
pair members.
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(b) Compare the efliciency of the test used in (a) with that of the
test used in Problem 2.

4. Determine the significance of the difference of the percentage of
those tuking the second test, reaching or excecding the median
score of the group taking the pretest in the fall of 1935.

10 7
100 —

90 s /

80 j "4 / .
70 -~ / 2 AN

60 F Y )
{ / RO
50 ;‘ 7 7
a0 .|f / .M'\
p >
I / R

30 7 < i

20 K //--- Gen College Second Test,
/ Win}‘er‘l936 N, =78

10 7 —— Gen. Coliega.Pretest, Fall 1935 NI2=125

0

Scores on Algebro Test

’ > 3

10 20 30 40080 60 70 80 90 100
Percentile Rank on Algebra Test

5. For the following disfribution caleulate (1) The variance from the
grand mean; (b) the varinnce from the sample means.
(¢) Note the exteht of agreement.
(1) ‘Why is dfiecessary to pay proper regard to the number of
degreesof freedom ?
2\
Sample'\\" 1 I TH _IV v Vi VII viII IX X
12 25 18 8§ 20 21U 15 24 28 39
29 25 22 21 22 19 23 10 25 21
~\. 22 23 17 17 24 12 18 23 11 18
\/ 20 1423 20 14 11 22 22 20 16
22 24 11 14 22 14 20 20 29 22

T,
3

¢ .\: 3

6. A check-up on the reading habits of seventh-grade pupils reveals
that 55 per cent of the 558 voluntary readings of one random sample
of pupils was mystery and detective, where only 45 per cent of the 122
voluntary readings of another random sample of pupils was of this
classification. Is there statistical evidence here that interest in the
mystery and detective type of reading is higher in one sample than
in the other?
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7. In an attitude test administered to an cxperimental group of 796
students and a control group of 861, Item 306 was answered correctly
by 51 in the experimental group and by 47 in the control group.
(a) Is there a statistically significant difference between the propor-
tion of the experimental group that answered this itemn correctly and
the proportion of the contrel group that answered it correcily?  What
is the statistical hypothesis tested? (b) In Item 35, 37 of the experi-
mental group and 37 of the control group answered this item cor-
rectly. Answer the above questions in regard to this item.

8. The following measures were obtained from an examination in per-
sonal hygienc for a winter quarter class and for & spring quartenglass.
Determine the significance of the difference between mouns\® Muay
the variances be assumed equal? What hypothesis isqmfer test?
What is the most appropriate test of the hypothesis? O

W,

Winter quarter class: & )
Mean = 20.56 \\
Sum of squares of deviations from the meanv= 28,235
Number = 675 A
Spri wrter class: fO
Spring quarte R
Mean = 22.07 PNY;
Sum of squares of deviations from’the mean = 12,535
Number = 350

9. Ina given situation n = 8L} Jfﬁé&n = 40, and standard deviation = 8.
If we assume that the standard deviation of the increased number of
cases will remain gp}ﬁ*oxjmatcly the same as given, what size of
gample is necessais(\tb reduce the standard error of the mean to .52

10. The following dase indicate the frequency of intrapair dilferences in
handednessinGdentical twins and in the handedness of their immedi-
ate relatises

A\
N
< ’ Identicul twins
AN RR  RL
o 3
Q -
Without left-handed relatives 105 25
With Ieft-handed relatives 26 22

Total 131 47

Is ithe prineiple of classification effective?

11. Following are two distributions of entering freshmen, the one having
had no high-school work in foreign languages, the other having had
two or more units in foreign languages. Tesl the independence of
the two distributions as wholes and by parts.
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12.

13.

14.

g {

Frequency subgroups, Units in high-school

percentile ranks on foreign language
College Aptitude Test None Two of more
G1-104 g 20
81— 90 7 27
71- 80 11 33
T 3 T
51— 60 15 7 23
41- 50 10 3
31- 40 11 33
21- 30 35 345
11— 20 24 50 £\
1~ 10 45 50 .
Ni=174 Ns=2330 w\“\'
The following data were obtained from four randomn ':..melefs of enter-
ing freshmen on a chemistry aptitude test: R N
Entering Group M;\\’
N X N
1438 35 18.66  3\B8
1639 48 17.23 4 \§~7a
1940 42 18, 07\‘ 4,05
1441 30 19, .)3 3 3.09
Taotal 155 18 3‘] 1.33

Test the homogeneity of the btandnrd deviations,
The following cocfiicients oft dorrelation were r eported between intelli-
genee quotients (X) amd chronologieal ages (¥) for two random
samples of students m\i course in elementary-school science, Test
the gignificance &R’the difference between the two eorrelation
coeflicients: |
‘S;:mplo 1: Ny = 96 Toy = —.507
’\::;\Sample 2: ?\fg =66 1, = —.455

The f lI@}\?‘ing correlation coefficients were obtained upon a random
samplovel 74 pupils in the sixth grade of an elementary school:

AN Pop = .55 e = 813 = 44

?

\ where ¥ = score on an initial achicvement test

y = mental-age score
2 = secore on a final achievement test,
Test the significance of the difference between r.. and 7y,

16, Test the significance of the differences among the following corre-

lation cocllicients reported for the illusirative problem in multiple
correlation (see page 332).

1y = 1784 Fay
8505 1y

5164 rey = 6704
0993

Toy
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CHAPTER VI
THE ESTIMATION OF POPULATION PARAMETERS

The Problem of Estimation. The estimation of characteristics of a
population, that is, the estimation of the parameter values of the popula-
tion, is a fundamental statistical problem. In such a problem we ysually
begin with an assumption about or knowledge of the mathematiegl form
of the population of which we presume to have a random sampled” We do
not have a knowledge of the values of one or more parafiigtcts in the
mathematical form. These values are required for the cpmplete specifica-
tion of the population. 7\

In goneral, there are a number of ways of eghimAating a parameter
from sample data, some of which may be better th alt others.  The theory
of estimation provides a basis for investigatingAhe conditions which an
estimate should fulfill, for determining thé best estimate to usc under
given circumstances, and for comparipgvthe relative cffectiveness of
different cstimates that might be used. .~

In its most practical form, t-l.xé{,"pfoblem of estimation is met with
by the research worker in his att&fipt to reduce his original data to a few
summary quantities which ghall comtain all the relevant information,
that is, all information wHith is of usc in estimating the values of the
parameters. The pro{@m’ of estimation is closely related to that of
distribution, since hagh'arise in the process of reducing data. From the
logical standpointgproblems of distribution precede problems of estima-
tion, since knowle\dge of the random distributions of various alternative
statistics, d:eij;éd from samples of a given size, is basic in the selection
of the pa;rﬁcu’lar statistic most useful to calculate.

The problem of specification, or the specification of the mathematical
form“ef’ the distribution of the hypothctical population from which 2

ple is assumed to have been drawn, completes the theoretical hasis
upon which depends the solution of the problems which arise in the redue-
tion of data. Although the three problems may be studied separalely, evi-
dently they are closely related in Lthe development of statistieal methods.
QOur purpose here is to study especially the problem of estimation. This
is the problem of determining how ohservational data can be best com-
bined to vicld the most accurate estimates ovbtainable of the unknown
parameters. Two procedures of estimation are considered: (1} estimation
by a point and (2) estimation by an interval.

In order to judge whether one particular estimate ‘or a group of esti-
mates is better than others, criteria are needed. Threc criteria have been

104
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advaneced: (1) con'ﬂbtencv (2) efficiency, and (3) sufficiency. Statistics
which satisfy these critevia are known as optimum estimates or optémum
statistics (Ref, 13),

CHARACTERISTICS 0F Good FSTIMATES

In order to be consistent, the value of a statistic must apploa('h more
and more closely the estimated parameter as the sample size is Indefinitely
increased,  Such a value is a function of the observations, which con-
verges stochastically to a population paramcter as the gample number
approaches infinity. An efficient estimate is one whose sanupling distribu-
tion tends to the normal law with the least possible standard errorés the
number of observalions is increased. Fifficicncy requires that, ¢jle vari-
ance of the estimate (at least for large samples) should not. moeed that
of any other consistent statistic ecstimating the same pammeter The
squarc of the ratic of the minimum standard error to tHestandard error
of another estimate (also normally distributed mothe limit) gives s
measure of the relative efficiency of the second estlmaLL The criterion
of sufficiency is satisfied by a statistic when no Qbher statisiic calculable
from the same sample can supply any additior\ml information regarding
the parameter under estimation. A sufnmént statistic is inevitably also
100 per cent efficient, since it 1ncmp01at‘cs the whole of the information
available in the sample in regard to agiven parameter.

The Measurement of Amount, of ‘Information. It is apparent that
these criteria for judging the goadness of estimates reguire the knowledgoe
of the amount of information tht is available in any sample relevant to
the population parameter under estimation. Fisher (1921, 1925) showed
how to measure the (\ ntlty of information provided by the observa-
tional data, relevang, torthe value of any particular unknown quantity.
The mathematicalsquantity used to specify the amount of measurable
information is Lhe feciprocal of the variance, or the invariance, of the
estimate. g

The ¢l \gof estimates which, as the sample is increased without limit,
tend tog e distributed about their limiting value (their mathematical
expegtation) in the normal distribution is the one appropriate to the
thé?n:‘y’of large samples. The amount of information afforded by an
estinate normally distributed with variance ¥ is 1/V, the invariance of
that normal distribution. In the normal case, the variance decreases
with increasing size of sample, n, always ultimately in inverse proportion
to n.

The eriterion of efficiency, noted above, is that the limiting value of
¥, where ¥V is the variance of the estimate, shall be as small as possible.
Fisher (Ref. 11) proved mathematically that the limiting value of 1/nV
cannof exceed a quantity ¢, the amount of information provided by each
observation the value of which is independent of the method of estima-
tion. It was shown that the reciprocal of the variance, or the invariance
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of the estimate, cannot exceed the amount of information in the sample.
Thus:

A

1 . .
7 nt = 1 {G.01)
This conelusion is dependent on proof that for certain estimates the limit-
ing value of

1

= {65.02)

The Maximum Likelihood Estimate. The instrument supplied by
Fisher for obtaining the estimates necessary for the limiting valud6.02)
to hold is the method of mazimum Iikelihood. DBy this methodgtestimales
of the parameters are obtained which maximize the likclibdud“unction
and have the smallest limiting varianee. The limiting Yalue of the
sampling variance of the maximum likelihood variauw;}: i Lurge samples
was proved to be \‘

" \/
" ARRAN
K70

We may state here that the proba.bilit-yz\éf gcerrence of & sample 18
expressible as a function of the unknp\i-'ir parameters, and the likelihood
is defined as a function of these paratweters propor tional 1o Lhis probabil-
ity. Thus, the method of maxi;ﬁﬁni likelihood gives as estimates those
values which maximize the prdbability that the totality of obgervations
should be that observed if e hypothesis which specifies the paramelers
of the population sample”i,} true.

In large samplgs the maximum Likelihood estimate hig the smallest
variance in compdrison with any other stafixtic which is in the lmib
normally distriedied. If the comparisons were resl ricted to statisties
which in theJipmt are normally distributed, the utility of ilis method of
estimatiof_would be greatly limited. lIowever, a stronger property
than p{ﬁﬁency is possessed by the maximum likelihood exlimate. This
propetty exists when estimates may be made which contain within them-

{il}'es the whole of the information available for finite samples, This s
iWe property of sufficiency. Where suflicient siatistics exist, all the
available information is contained i the maximum likelihood extimate.
In random samples from a normal population, the mean and the standard
deviation—the only two characteristics necessary to =pecily this popula-
tion—are suflicient statistics. It is this fact (hat gives the great simplie-
ity to the problems falling within the theory of errors.  Thus. in mueh
experimental work it is necessary to be concerned only with the precision
of the sum, or mean, of the obscrvational values and with the est irnation
of this precision from the sum of squares calenlated from thie data These
two quantities contain all the information provided by the data with
respect to the mean and variance of the hypothetical normal model. In
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cases where no sufficlent statistic exists, Fisher has shown how the infor-
mation in the sample may be recovered by using as anciliary the con-
figuration of the sample. The configuration serves to indicate the
precision of the cstimate made, although it gives no information about
the value of the parameter itzelf.

In experiments where the variance of the population is not known, it
must be estimated from the data. Such an estimate is itsclf subjeet to
error. For this error, exact allowance is made in the distribution of ¢
when we test the significance of the deviation of the observed valuc from a
hypothetical value specified by hypothesis, 1n such cases it would, be
incxact to assume that the amount of information provided b} the
experimental results with respect to the true value under e;stzmatlon
would be given by 1/s% the reciprocal of the sampling vdtignee. In
determining the absolute precision of the experimental msult not. only
the estimate, 52, derived from the data but also the nimiber of degrees
of freedom used in the estimate need to be taken mto atcount. In this
case it has been shown (Ref. 11, page 249) that the\gmount of information
provided by an observed value, z, relative to thQ\u‘nknoun mean popila-
tion value, g, is given by S

n+1 A&
m > {6.03)
where » is the number of degrees ofufycedom.

Other Methods of Estimation: 3\ The most important general method
of estimation so far discoveredy, at least from the theoretical standpoint,
is the method of maximumlikelihood, Tt will be frequently encountered
in later discussions. T 0{5 vare other methods of estimation which should
be considered. Under certain conditions all methods may yicld similar
results, -

The oldest enera] method of ferming estimates of the purameters
of a dist-ributj(.él:om sample values is the method of moments introduced
by Karl Pearson, in which sample moments are equated to the corre-
sponding i;fxomentq of the distribution which are functions of the unknown
paramcﬁers As many moments ag there are parameters requiring esti-
mafion are taken into account. The obtained equations with reference
to the parameters are solved to give the estimales of the parameters,
The fitting of the normal! curve to a series of observations illustrates
the process of the method of moments. The moment coeflicients often
involve relatively simple calculations in practice, but their efficiency
decreaszes when the variations among the observations depart widely_
from normality.

The critcrion of testing the closeness of an estimate In terms of a
minimum standard deviation of its sampling distribution has been con-
sidered, Likewise, the criterion of testing closeness of fit of the estimates
to certain parameters by a minimum x>value has been used. DBoth
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these criteria are satisfied by the method of maximum likelihood in deal-
ing with large samples.

The original use of the x*-test by Pearson (Ref. 27} was in the case
of a completely specified hypothetical distribution. In thix ease it was
established that x?, under the assumption that the hypothesis is true, is
distributed in repeated sampling in a x®-distribution with » — 1 degrees
of freedom (r is the number of groups into which the sample values have
been classified}. Most often in practice, the hypothetieal distribution
containg one or more unknown parameters. In these cases certain
modifications were necessary in finding the limiting distribuiéis of 2.
IPisher (Refs. 9 and 4) showed that, for certain important, wethods of
estimation, the modification could be made by reducing thediumber of
degrees of freedom of the limiting distribution of x2.by/one for ¢ach
estimated parameter. N

The method of estimation yielding a minimuny ‘%?* value is known as
the x? minimum method of estimafion. In pra€lice, the method often
leads to diflicult solutions, so that certain mddifieations have resulted
in what is known as the modified x* minimtim ‘method (Ref. 2, page 426).
In certain cases this method is i(‘lentical:\vith the maximum likelihood
method. In the case of fitting ce;tﬁ:in' distributions, for example the
binomial and Poisson disfribution, and the normal distribution, the two
methods give the same resulty®WThe method of maximum likelihood,
however, can be extended to‘p'r'ol')lems more general in nature.

A method of estimatipmndeveloped by Markoff (Refs. 21 and 26) is
based on the principleef nbiased estimates. Markoff has shown in
various cases how th'construct linear forms in the observational duta
which give estimatfes of certain unknown parameters that have no bias
and the variangas’ef which have the smallest possible value. The process
of obtaining ihe’best unbiased estimate of the population variance, o2, i

based orivfhis principle, for example, s? = ZX ~ X)f
\ t n — 1

Reint Estimation and Its Limitations. The procedures of estimation
jugt xliscussed may be called estimation by a point. A single value is
“given as the “best” estimate of the truc or population value. Such a
procedure does not provide a basis for specifying the degree of confidence
one may place in such an estimate. Ttis known, of ¢course, from sampling
theory that the estimate made is not likely to be exactly equal to the
population value. With large homogeneous samples the discrepancy is
small, but with small samples the discrepancy may be considerable.
Point estimation does not take directly into account the size of the sample
which supplics the unique estimate. Because of these limitalions in the
method of point estimation, estimation by intervals seems to be increas-
ing in use.

There are, of course, many occusions when a single value estimate is
needed, particularly for certain subsequent statistical analyses. In the
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case of interval estimation, the single estimate is wanted as material
for a subsequent process of estimation,

Estimation by Interval. We cannot tell from any sample estimate
whether it i8 too great or too small. For this purpose further samples
from the same population would be needed. It seems obvicus therefore,
that what is required is an interval of some kind whieh may be expected
to include or cover the true population valuo in a specified number of
cazes. From the sample value and other ancillary information, we can
caleulate the point values of the upper and Iswer limils of the interval
and then procced to state that this interval will include or cover the
population value. From sampling theory we can caleulate 1the numberof
times in repeated sampling that the statement would be correet. , This,
the proportion of cases in which the statement may be assgméd to
be correct provides a measure of the ¢onfidence to be asc;*ib:e\d to our
statement. £

Fiducial Limits. R. A. Fisher (Refs. 10 and 3) firstintroduced the
method of estimation based on the concepts of fiduewt probabiliiy and
fiducial lfmats. The basic ideas underlying FislieMs theory may be
presented as follows, _ PN

Observations in the experimental or obsefvational sciences are con-
crete and specific oceurrences. They are, mow frecly applied as a basis
for probability statcments about paramcters whose exact values are
unknown except for the information g¥silable in the observations. The
kind of reasoning employed here coiies from tests of significance, and the
probability statements are designited as statements of fiducial probahil-
ity, in order to distinguish s@eh’ statements from those about “inverse
probability.”” Fisher (Re&‘.l? has indicated the fundamental random-
variable relation which connects sample and population. The eszential
step in establishing this.relation is in the {following asserlion: Irrespective
of the character of th&sample, the probability that the populaiion param-
cter shall fall in/any range is derived from the known probability, P,
which is delinéd)as the function of the variable, and from the test or the
pivotal qg&iﬁﬁ'ty in the test of significance. The assertion requires only
that the\'ur'i'known parameter value shall fall in the range corresponding
to thesp-known quantities. In this sense is to be interpreted the some-
what\daradoxical statement that a sample with knrown characteristics is a
random sample of an unknown population. .

The properiies of variable statistics are derived from observations
which are defined as random variables involving parameters upon which
their distribution functions are dependent. These propertics are used
to establish the connections between the probability distribution of the
rahdom variable and the distribution of the statistic used as the pivotal
quantity in the test of signiticance. The statistic used as the pivotal
quantity is functionally indcpendent of the population from which the
sample is drawn. This connection, once established, gives meaning to the
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practical situation where the statistics are observable but the paramoters
are unknown, _ _

An illustration (Ref. 12) serves to show the application of this process
of reasoning or form of fiducial argument. I'ollowing it, one may go
from forms of statements embodying observations as random varizhles
to forms of statements embodying observations as fixed duta. In the
former, the distribution functions include certain fixed but unknown
parameters; in the latter, the frequency distributions are derived for the
unknown parameters considered as raundom variables.

Let £ be the median of a distribution concerning which the on\ly thing
known is that its probability infegral is continuous. Taka the case
where n = 2, that is, where X, and X, are two observationalvalues of the
variable X. For any given value of £, the facts arg"that the three
probabilities—that X: and X, (a) should hoth exceed the median, (b)
should lie on either side of it, (¢) should both be lesmpthah it—must oceur
in the frequency ratio 1:2:1, If 7 stands for thenumber of observations
less than the median, then » becomes a pivotal suantity involving both
the unknown parameter and the observatighghwith a sampling distribu-
tion independent of the parameter; that }Q‘. ¥ takes the values 0, 1, and 2
with probabilities ¢, %, and %, respectivdly. This leads to the fiducial
argument from the two given ol;s;ai-vﬁt-ions, now considered as fixed
paramecters, that the probabilit-y’is:;% that £ is less than both X and X,;
50 that £ lies between X1 an@\X;; and .25 hat # exceeds both X 1 and
X This reasoning thus Iends to a frequency distribution of £, now
considered as a random vsrinble,

For a sample of ady) size, n, the following quantity expresses the
probability that the fédian shall exceed r of the observations and be less
than n — »:

‘\’" rin — r)l

Confidence Intervals. The complete theory underlying the method
of inteijj}'a estimation developed by Neyman (Itef. 25) cannot be presented
hetex ™ However, the definition and usc of the two coneepts of confidence
dndervals and of confidence coefficients ave presented briefly.

Consider a sample of # random variables X L Xe .., X, then
observational values. Denote by £ the set of values of the X variables.
This set can be represented by a point, called the sample point E in an
n-dimensional space, the rectangular coordinates of E being X, Xoyov vy
X.. Assume that the probability law of the sample Xy, X, . . ., X4,
though known, is given in terms of two barameters #; and @, which are
unknown. I is desired to make an estimate of one of the parameters,
say 8.

The process of estimating 6, consists in constructing two functions
of the observations, 8(&) and 8(E) and in estimating the parameter to

2-» (6.04)
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be within the interval: §(%) = [B(E), ()] TItis important to point out
certain properties of the functions  and g, Since they are functions
of the sample values, X;, X % <+ ., Xy they are both random variables
and will vary from sample to sample as the sample point X LXe ..., X,
varics.  Since they are random variablos, the probabilitics of 8 and § lying
within or without any specified limit may be considered.

Denote by 6? the true value of the Parameter 8, in a particular problem.
Then 8(£) and 8(%) should have this property: the probability that when
¢} and @; are the true values of the two parameters, §(¥) is less than &
and 8(E) is greater than 80 and i3 equal to «; that is, ~

PIo(E) < 6} <GB0, 6] = o A\[6:05)

The interval extending from 8(%) to §(E) in (6.08) is called the con-
fidenee intervad corresponding to the sample point E, andthe value o
{for cxample, 0.95, or 0.99 . . ), the rconfidence coeﬁbfent. What is
required in (6.05) is a probability of a specified value, }vl)al’oever the values
of 6, and 8z, caleulable from the probability law depending on 6, and 6,.
Thus the functions 8 and 7 must satisfy (G.US)QaIso identically for all

7

possible values of g,. S

"The meaning of the confidence interval may be said to be this: Assume
that a large number of samples are drawynTandomly from a population
obeying the specified elementary prg)béb‘ilit-y law. Tf in each casec the
statement is made that #9 is includednn the interval [8(E), 8(E)], then the
rclative frequency of correct statchents will be approximately equal
to the confidence cocflicient, /& For example, tuke o = 0.95. If 100
samples are tuken and 100 odiﬁdence intervals set up, it may be expected
that 95 per cent of theselintervals will include or cover the true value,
say 6. It should be Hoted that this statement is not equivalent to the
statement that thexpeohability is 95 out of 100 that g lies between the
limits g and §. Fhtis discrepancy is explained by the fact that ¢ is not a
random variable bt an unknown constant. Consequently, the probshbil-
ity of 67 fallh?&.%ithin specified limits may be cither zero or unity, depend-
ing on whéther the actual value of 8 falls without or within the limits,

Further development of the theory (Ref. 24) indicates that there
exisfs gh infinite number of confidence intervals for a given confidence
coefficient. Hence, some principle is needed as a basis for choosing from
among them, One principle is to select the shortest system of intervals.
Shortest eonlidence intervals, however, exist to a considerable extent only
in exceptional cages, Other principles, such as unbiasedness, have been
used; but even shortest unhiased confidence intervals exist in only g
restricted class of cases. A third type of interval has been called the
“short-unbiaged confidence interval.  If there is more than one param-
eter, there is not often a confidence interval for one of the parameters
which is independent of the other parameters. With more than one
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parameter the set of points constitutes a simple cloge region, iff 1t existg,
rather than a single interval as in the casc of only one parameter. In
the case of several parameters, Dew problems arise.  But the deseription
of the basic ideas has been given in the situation described above,

Fiducial versus Confidence Intervals. It appears that IMisher’s theory
of fiducial probability and Neyman's theory of confidence intervals are
closely related and that In a number of practical cases they muy lead to
the same form of procedure. The authors, however, indicate o disagree-
ment in the logical foundations as well in cerlain practical applications.
Neyman (Ref. 23) has atterapted to develop a general procedure swhich
will supply rules for setting up from observational datie £0vinterval
that will cover the unknown parameter with a given probapilily.  Fisher
(Ref. 7) indicates that a unique probability measure asdtiied with a
particular interval is needed. This measure i3 dofiréd as o fiducial
probability. An essential point of agreement i 40 dhe interpretation
that the probability of, say, 0.95 is not the probubility that the parameter
cstimated lies botween any fixed limits but, raier, thatl a variable state-
ment about this parameter formulated in acgordance with o speeified rule
will be correct. Fisher expresses it bg‘({s.-n.ting that there is a fiducial
probability of 95 per cent of the ubknéwn parameter’s lying within the
specified fiducial limits. According to Neymuan, the stutement would
be made that the specified intgeval will cover the true value and that we
know that the statement will be correct 95 limes out of 100.

Fisher (1935) has emphasized that a fiducial statement can be made
only in terms of the edfimate if the cstimate of the unkunown parameter
has the property efgufficiency, because only in this case does the estimate
elicit the who]e})} the available information. Nevman's confidence
intervals are apparently of more gencral applicability.  Whetan cstimate
is sufficient\Doth the fiducial limits and the limits of Neyman's shortest
conﬁdqnge\ihtcn'al or of his short unbiased confidenve interval depend
on this'property of sufiiciency. The interval would notl. however, always
b.e the same in the two cases because of the uxe by Nevman of an add-

o tional prineiple in the determination of his infervals.
N It would appear, however, that the twe provedures wonld be inter-
changeable in at Ieast the first two examples that Tollow.

ProsrEMS oF INTERVAL BsTiMATION

Probl_em VL1i. Estimation of the population mean. 'The first prob-
lem. consists in estimating g, the mean of a normul popnlation of knowh
variance ¢%, given a sample mean X based on n items,

From our study of sampling theory, we know that the means of
random samples from & normal population, fur example, the X's, 81
normally distributed about u with a standard deviation (called the
standard ervor of the mean, ¢¢) equal to o\ n. Henee, we know the
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proportion of sample means which will Tie within the interval: ¢ + some
multiple of sz, The conflidence interval may be written as

R mpute S <Xty (6.06)
V'

v
vV
where y. 18 the value of
_ValE -y
T

for a given confidence coeflicient «, which can be read from a normal
probability integral table. If & = 0.99, then y, = 2.576. 1f o = 0.95,
then g, = 1.96 no matter what n is. For examplo, we find that 99\per
cent of the sample means will fall within the interval p + 2‘576(_§,\a.nd
95 per cent within the interval p + 1.96cz. On the basis of*sanipling
theory, if in repeated sampling we take the interval eztondmrr from =
lower limit of X — 2.57605 to an upper limit of X + 2, 5.«'6@, then this
interval will cover the population mean, g, in 99 per contof cases.

We may take as a practical illustration the 160 samples of 5 items
each drawn from the population with g = 30, oi—“lﬁ FFor samples of

5 numbers oz will be L&
o 10 4 4% ’
vno VB
Using a 95 per cent confidence Loefﬁcmnt ‘we take the intervals extending

a
from X — (1.96)(4.472) to X *q @ 96)(4.472), or from X — 877 to

TABT E 3
CoNFIDENCE INTERVALS FOR THE ] {Maxns or 100 Ranvoom Samries oy Sizg 5, UsiNg
& Coxrexet CoersicieNT oF 95 peER UBNT

(R@sn'ﬂation x =30 ¢ = 10

14.23-31.771 20 834797 12.83-30.37 25,0342 57 24 R3-42.37
28.03-45.57 1 18.28%35.77 19,8337 .37 20.23-37.77 15.03-32.57
18.63-36.17] 19.83537.17 21.03-38_57 23.43-40.97 19.23-36.77
24 .03-41.57 | {4%.83-36.37 22.03-39.57 31.83-49.87 23.23-40.77
50,2347 TTN23.43-40.97 18.43-35 .97 21.03-38.57 15.03-32.57
934340 07} 25,8343 87 24 43-41.97 13.83-31.37 270344 .57
23. 03—4Q BT 23.63-41.17 21.%3-30 .37 20.03-37.57 24.03-41.57
16.88<84137| 17.83-35.87 28.83-46 .37 22.63-40.17 16.83-31.87
1 382 17| 22.83-40.77 23 234077 23.83-41.37 23 43-40.97

93.0340.57 | 23.03-40.57 13.43-36.97 17.23-34.77 17.23-34.77

22.43-39.97( 21.03-38.57 26.03-43 .57 20.83-38.37 14.43-31.97
26.23-43.77 | 21.83-39.37 23.23-40.7Y 14.83-32. 37 19.63-37.17
20,4337 .97 | 22.43-39.97 25.493-43.37 23.05-40.57 22.23-39.77
19.03-36.57| 17.63-35.17 20 234677 21.63-39.17 18.43-36.97
13.03-30.57| 18.23-35.77 17.63-35.17 19 43-36.97 12.83-30.37
13.83-31.37[ 16.83-34.37 20.43-37.97 23.6841.17 29 (346 57
29.03-46.57 19.23-36.77 25.0342.57 13.63-31.17 15.03-32 57
]3.03—30,571 15.23-32.77 15.83-33 .37 30.0347.57 20.63-38.17
15.83-83.37| 22.63-40.17 15.43-32.97 28.8346.37 20.43-37 .97
10.63-28.17) 26.23-43.77 29.63-47 .17 22.63-10.17 23 83-41.37

|
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X + 8.77. We calculated thesc intervals for the '100 sample means
given in Table 3, page 34 They are recorded in Table 31. It is
noted that only one of the 100 intervals caleulated, namely, 10.63 — 28.17,
does not include the population mean 30.

The sampling experiment was repeated by taking random samples of
size 50 instead of 5. The means of 100 samples of 50 ems each woere
caloulated. Again, the intervals were set up by using a _conﬁdence
coefficient of 95 per cent, which in this case extended from X — (1.96)
(1.4142) to X + (1.96)(1.4142), or from X — 2.77 to X + 2.77. We
found that the population mean 30 was covered in 97 of the 100-cases.

An extension of the sampling experiment was made to oblain the
reans of 100 samples of 100 items each. The confidence inger¥als with a
confidence coefficient of 95 per cent were caleulated agailt,)given by the
limits ¥ — 1.96 and X + 1.96. We noted that the population mean 30
was covercd in 96 of the 100 eases. s

In all three of the sampling experiments, there}ore, there was a close
agreement batween theory and observation \\We noted alzo that the
confidence intervals hecome shorter as the gize of the sample ig increased.
Therefore, the larger the sample, the.moreé accurately can the true or
population value be estimated. O

Problem VL2, Estimation of the population mean of a normsl popu-
lation of unknown variance, Nearly always, in experimental work,
neither the mean nor standard deviation of the population from which
we are sampling is knowns, In estimating the population mean in such
cages, we have to usethe' mean and standard deviation of the sample
and the distribution 6f¥” We shall calculate the fiducial values according
to Fisher (Ref. 5ppp. 195-198).

A fundamental principle in the use of the +~distribution for the solu-
ti?n of this\ppob]em is: If an estimate of s parameter is normally dis-
t-{lbt{ted:with & variance which can be estimated from the sample and the
(113’[-1‘1}\3@01’1 of which is independent of the cstimate of the parameter, then
(idugial limits can be calculated from ““Student’s” ratio.

m:.\:I‘he following are the characteristics of ¢ which give it its unique
< utility for the solution of this type of problem:

{a) The distribution of ¢ is known with exactitude, without any sup-
p%em.enta-ry assumptions or approximations.

{(b) 1is given by the single unknown parameter, g, and by obscrvable
statisties only. .

{(¢) The s?a-tist-'ic-s invelved in the quantity ¢ are sufficient.

The quantity ¢ is expressed by

t=X;”=\/‘*‘3(§*ﬂ) (6.07)
Va
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where

{t is noted that since all terms on the right-hand side of (6.07) except &
are observable, the fiducial values of i are determinable when valuoes of ¢
appropriate to any chosen level of significance, ¢, have been chosen.
Purtherrcore, X and s? are independently distributed: and the two
quantities, the sum and the sum of sguares, caleulaicd from the daia
are sufficient statisties, gince they contain all the relevant information
concerning the mean and variance ¢of the hypothetical normal curve.
Therefore, we may write Q

- a N
=X+ AN6.08)
" A

as the corresponding fiducial limits for the value of . With tespect to g,
it may then be said that the fiducial probability is (1 £ e) that it will lie
within these fidueial himits. .\

Ag g practical illusiration, we may set up the ﬁducml limits of the true
mean difference based on the data from ithe Loxttvo]led experiment given
in Problem V.6, page 75, in which the null hyp‘othesm was rejected at the
5 per cent level. )

The following quantities were t)bta,med

X =928 &%
n =25 %
HUX — X)2 = (;8(09 04
X ~ X)* _ 6809.04
\\ - 5i— = 28371

We wish to set-ip fiducial limits with a fiducial probability of 95.
Accordingly,

t. = fas

O~ +2.064 (for n — 1 = 24)

AN\ Fios

2 &

I

and

vV | (6.00)

X
9.28 + (2 064)(3.368)
2.33 or 16.23

H—

f

With respect to the population mean y, it may he said that it has a
fidueial probability of 2.5 per eent of being less than 2.33 or of being
greater than 16.23, and, in the same sense, & probability of 85 per cent of
lying within these fiducial limits.

Problem VI3, Estimation of the population variance from the sam-
ple value. If the experimenter is interested in determining whether the
variance or the standard deviation of a normal distribuatlion could exceed
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a given value or could lie in a given range, a test of significance is necded
for which the pivotal quantity should possess the following characteristics:

(a) Tts exact sampling distribution must be known. ‘

(by It must be expressible in terms of the unknown variance, ¢, of the
distribution sampled, together with known statistics only.

(¢) The statistics involved in the expression of the quantity must be

sufficient.

. 4
It iz known that Lﬂ'—;—)ﬂ is distributed as is x® for n — 1 degrees
"\

2
X" isthe ratio of the estimate of the po\pulation
: ¢\,

of freedom. That is, if —
varianee as obtained from the sample for n — 1 degrees of fl':(?edém to the
true variance, ¢, then x? is distributed, independently pf}jg,he population
mean and variance, in a distribution determinable ffam the number of
degrees of freedom (Ref. 6). AN

The upper and lower hundred e per cent fiditeial Jimits of ¢ can he
obtained from tables of the x2distribution. slfthe two critical values of
x? are represented by x% and x3, the ﬁducialf(aingc of ¢ will be the interval

[(n — l)s{‘(n: ’) 1)32]

xd N X

As our practical illust-ratjpﬂ; ‘we set up the fiducial limits of the
variance of the distributigm\based on the data in Problem V.6, If we
take e = .05 as the probablelower limit of the value of ¢ forn — 1 = 24,
x% 1% less than 36.415Gn.0nly 5 per cent of trials {(see Table I1I, Appendix).

Substituting this value of x* in the equation

P\ . (X - X
4 T
N _ 6809.04 (6.10)

o ¢
Wichave __ 6309.04
) 36.415
N\ = 186.98

_ Simi%m’ly, the probable upper limit to the value of ¢ is obtainable by
first noting that x2 for n — 1 degrees of freedom exceeds the value 13.848

l(té f&ly 5 per cent of trials. Substituting this value for x? in Equation

6309.04
x* =
¢
we get 6 — 6809.04
13.848

Il

491.70
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We may say, then, that the fidueial probability is 5 per cent that the
variance should exceed 491.7 or he less than 186,98, and, in the same sense,
a fidueial probability of 90 per cent of the variance lying within these
fidueial imits.  If a linear measy re of variation ig wanted, the correspond-
ing fiduecial limits for the population standard deviation are 22.17 and
13.64, respectively.

Problem V1.4. Estimation of an individual’s true score from his ob-
tained score on a test, W assume that the scores an individual would
obtain on a very large number of equivalent tests are distributed in a
normal manner about his true score with & standard deviation equalte the
stundard error of an individual score, o = § /1 — 7, where, N8 the
standard deviation of the distribution of scores and » js the kehability
coefficient of the test. The upper and lower limits of te)donfidence
interval of his true score, £, are given hy :»':.

Xt YulsvVT =9 “;’:’ (6.11)

where ¥, is the value of ¥y =(X — /e fora givanvconfidence coefliciont,
@, which is read from the normal probability\Mtegral tablo ; X g the
obtained score; and o, is the standard crrorof X.

As an illustration, let us set up the ¢oifidence interval for the true
score of a pupil who recoives an I.Q. }'a'tjn?g of 105 on a particular intelli-
gence test on which the standard arror of an individual score is 4 T Q.
points. Using a confidence coefﬁgﬁiént of 98 per cent, the upper and
lower limits of the confidence intetval are, respectively, 105 + (2.326)(4)
= 114.3 and 105 — (2.326)(4N= 93.7. We then state that the interval
(95.7, 114.3) will cover the frhe 1.Q. seore of this individual, and we know
that our statement concerning the true score, £, will be correct in 98 per
cent of such cases. .\

Problem VI.5.\Estimation of the confidence interval for the popula-
tion median in sgmples from any continuous population. We have eon-
sidered the s@ﬁling distributions of certain statistios caleulated from
random sam[}}ies involving only one of the unknown parameters specifying
a parentjaﬁpula,tion of known form. The method of interval estimation
wagatsed to set up in terms of the observations at any level the confidence
interwal for the unknown population parameter,

Thompson (Ref. 30) and Savur (Ref, 20) independently obtained the
confidence interval for the median without reference to the form of parent
bopulation. Cases arise in which the population form is unknown ar, as
In small samples, in which it is not easy to test an assumption of normal-
ity. Here the interval estimation of the median ag a measure of loeation
i3 especially useful. Nair (Ref. 22) used the results of Thorapson,
restricted to continuous populations, to construct a table of confidence
intervals for the median, the use of which makes the problem of estimation
extremely simple.
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In & random sample of n observations X, :7(2, R X.k,. c, X
arranged in ascending order of magnitude, if Py is the probability integral

of X3, then

P(X < X) = PP <Py = [, PPl = Py¥dp = Ipn = k + 1K)
(6.12)

where Ix(P,q) is the function tabulated in the Incomplete Ieta Function
Table. By definition, the probability integral corresponding to the
median, M, is 3. Therefore,
PM < X;) = P < Py) = Ios(n — k4 1.k}

Also, PM < X)) = P(M > Xoy1a) )
Hence, P(Xp <M < Xup)=1—2Ls(n —k+ 18 (6.13)
which is the confidenee interval of the population m&(ﬁ;ﬂﬁ: It states that
the unknown population median will lie in the intewval extending from the
kth to the (n — k -+ 1)th chservation in 100000+ 2Fs:(n — & + 1, )]
per cent of the cases. RN

With the aid of the Incomplete Beta Fanetion Tables, Nair (Ref. 22)
prepared the Table of Confidence Intervals for the Median for values of
from 6 through 81, for confidence, cuefficients of 0.95 and 0.99. This
table consists in finding % such thatgiven n,

Lus(n — ki1, k) = 0.025 or 0.005

Q"

Since & can have only i ’t-'égral values, the confidence coefficient cannot
be fixed exactly at 0.95.0r 0.99 for all values of n. Values of k arc taken,
which bring the confidence coefficient

<" I—2Ls{n —k+ 1, k)

nearest 1@({3&1{1 greater than} the conventional values of 0.95 or 0.99.
F({Qs(alues of n larger than 81, Nair (Ref. 22) suggests the use of the
Emfm"‘}l curve as an approximation where x, the relative deviate, is given
s

N

"9 (g) . N
x (\‘;n) \V'n (@1

For a given confidence coefficient, such as 0.95 or 0,99, the correspond-

ing value of can be obtained from the Normal table, and the value of #
can be determined from the relation

b “_:é__m (6.15)
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As an fllustration of the use of Nair’s Tables, we shall set up the con-
fidence interval for the populaiion median, M, using the sample data
giverr in Problem V.6, page 75. Tho sample median, Md, of the indi-
vidual pair differences 1s 10; n = 25,

We enter Nair’s Table given in (Ref. 22) with n = 25. 'The argu-
ments and values for n = 25 given in the table are as follows:

Confidence coefficient = 0.95 Confidence eocflicient = 0.49

n ok on—k+1 Isln—k+0LE |k a-k+1 Ign—k+1, B
25 8§ 18 L0216 6 20 0020 A ]
2\

7"\

For a sample of 25 observations, we can say that, w,itl’}‘gi confidence
coefficient of 95,68 per cent [100 — 2(.0216)], the population median M
will Lie between the eighth and eighteenth ranked aifsé‘rvations, that is,
between 17 and 3.  We can also say that, with a‘confidence coefficient of
99.6 per cent, the population median, M, will he)between the sixth and
twentieth ranked observation, that is, betwe 124 and —6.

Problem VI.B, Setting up the confidence interval on a population
difference from a given sample differense in percentages. If percent-
ages are obtained within a sample, }h&i"is, the percentages of “yes’ and
“no’ answers to a given question, “the problem ariscs of how to get
confidence limits on a populationsdifference, d, for a given sample differ-
ence, d. Wilks (Ref. 32) g'@és the 99 por cent sampling limits of 4 as

R N Ty ey v (6.16)
R

That is, in drawing repeatedly random samples of size n from a population
in which the ‘‘Fes” and “no” percentages are Py and Pa, respectively,
approximaﬁe&g\’% per cent of the samples have a diﬁ’ergnc_e ¢ which lies
between these two limits. In practice, sample values d, P, and P; are
substitu%éd for the unavailable d, P, and P2, This procedure may be
saistaetory for practical purposes.

Nilks gives the quantity 258/+/n as & simple, conservative critical
value of he sample difference d. If -4 is larger than 258/ V'n, the
probability is at least 0.99 that d, the population difference, would be
included hetween two positive confidence limits. The more common
interpretution would be that at the 1 per eent level of significance a true
difference d between the “‘ves” and “no” percentages exists in the
population,

As an illustrative problem, let us test the significance of the difference
between the two proportions in a random sample of 77 male graduates
of a teachers’ college, 22 of whom remained in the feaching profession
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and 55 of whom left it within 10 years after graduation. The approxi-
mate test of significance given by the pivotal quantity 258/+/n shows
that d, or 42.8 per cent, > 258/‘\/ﬁ > 20.4 and hence significant at the
1 per cent level. The 99 per cent confidence interval is given by sub-
stituting the sample values for d, Iy, and P in (6.16). Thus:

2.58 4T 28.0) — (428) = 42.8 + 2.5
d + ﬁv100(714+ 8.6) — (42.8)

or the confidence interval of the population difference, d, with a confidence
cocfficient. of 99 per cent 1s (16.3, 69.3). ~

Problem VI.7. Setting up a confidence interval of a population dif-
ference from the difference between two sample percenfagés. The
problem of comparing two percentages in different random¢®amples differs
from that in Problem VI.6 in that in the latter there is aRegative correla-
tion between the percentages of “yes” and “no” gns?wcfs. No correla-
tion exists in the percentages in the two different-samples. Wilks (Ref.
32) gives 99 per cent sampling limits of d as ’

d + 2.58 \/P 1“0?%1_ Py (000 — Py) (6.17)

e

and the corresponding conservative,.tiﬁﬁi'cal limit for d as

129\, ZM (6.18)
3 g

If instead of calculaiti{ié; d, the difference between the percentages Py
and Py, we first tra@brm the percentages to the inverse sine function
(see page 164), then

Ty N T I
oNd = 100 “af L gin—t 40l -
S (sm 100 — Sin 100) (6.19)

£N\S
\¥ (ﬂl -+ ng) . .
Then 1‘ N me to a close approximation at the 1 per cont level,

an.exabt critical limit of @',
\"f\; “As an 111ustrz?4t-i0n,.we shall set up the 99 per cent confidence interval
ar the‘populamon difference from the two samples of percentages of
qolor—blmdness in the two sexes of the Caucasoid population (see Problem
V.8, page 80). '
From the data,

b= &4, B, = 1.3, d=171

The 99 per cent confidence interval i i ituti
= - : s obtained by substitut. sample
values Py, Py, and & in (6.17): Y substituting the samp

o [BHOLE 3085
d+ 2.58,/-—-753——_-#(——%3(—3%—'2 =71 4318
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Therefore, the 99 per cent confidence interval of the population difference
s (3.9, 10.3).
Again using Formula (6.19), we get?

d’ = 100(sin—" /084 — sin—t +/.013)
= 100(16.8 — 6.4) = 1040

m AN, 1025
and 129 T 129 . /m183,976 = 0.6

Since 1040 > 9.5, the prohability is at least 0.99 that a. genuine difference
between the percentages exists in the population.

Problem VI.B. Setting up the confidence limits for an individuat
estimated score. In problems of estimating or predieting a, megsure of a
characteristic from a knowledge of one or more other charae{cer}stlcs the
predicted values are subject to error. Here we can use the confidence
interval to show the accuracy of individual estimates, zmd‘ the confidence
that may be placed in the statements made ah@t individuals, We
shall take the case of simple regression, thatJdsi\the prediction of one
characteristic from a knowledge of another.? The data are from Problem
V.13, page 88, and we shall set up the con{dfnce interval for each of the
individual’s estlmat(,d score from the eftession equation, using a con-
fidence coefficient of 98 per cent. T he>basic calculations are given in
Table 32, R\

The standard error of the estlmate ¥ g for a particular value of X, say
X, is given by \\

o Z.{S%‘Efl =) [1 4 Ko X)z]]; 6.20)
K

.2
2 g%

where sy, denotes the standard error of Y, ¥ is the number of pairs of
obscrvations, and;'tlie other quantities have their customary meanings.
Trrom the{ormul&, it is noted that the errorz of the estimates of ¥
increase astthe’ quantity X, departs from the mean of the X-distribution;
ais0 tha;‘sx the valies of + and sx become larger, the smaller become the
errorg%f estimation, other factors being equal.
F?*Dm Problem V.13, we rucord the following values:

3
.\ Y5 = .9873X - 0.68

s2 = 157.30
52 = 172.59
r* = {.8885
X = 53.24
N = 25

1 Transformation ohtained from Figher and Yates’s Table XTI, page 56 of Ref. 18
in Chapter VIT.
* For the multivariate casc see page 343.
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TABLE 32 )
SraNDARD Errogs oF EsTiMATED VALUES oF ¥ roR DIFFERENT YALUEs oF X, wiry
Corgrspoxping 98 pEE Crnr CONFIDENCE INTERVALS

Independent varighlos
arranged in descending
. order of magnitude
Indi- } v |y | vy Syz | toeSyz Interval
vidusl
X, Sry | £028vs
L 1@ 3 @ (8 (8} T (& 9) .(\10)
1 46 | 52 | 44.74 | 1.086 | 2.64 | 42.10-47.38 3 1 ‘7.(}2': N 4,27
2 138|38|36.84|1.439 | 3.60 | 33.24-40.44 73 LS00 4.27
3 [ 64| 636251712051 3.01 52, 50-65.52 67 i 19857 3.39
4 73785 71.3% |'1.707 | 4.27 } 67.12-T5.66 66 N1 305 3.26
a 61 | 58 | 39.65 | 1,076 | 2.60 | 56.86-62.24 ‘6{5, 1.305 3.26
L
6 | 341331328 | 1.675 4.10 | 28 70-37.08N }4 1.205 | 3.01
7 157 (49 (55.60 (0,955 2.30 |53.21-57.988 64 | 1.205 | 301
8 | 6663 (64.48(1.305[ 8.26 | 61 ,22—6@& 61 | L.0va ] 2.69
9 1252424002255 | 5.64 18.3%&1‘64 61 | 1.075 | 2.69
10 /30|26 28941 1.926 4.81 | 204383.75| 59 | 1.006 | 2 51
11 45183 1 43.75 [ 1.004 | 2.73 [\4170246.48 | 57 | 0.055 | 2.39
12 173 | 71 | 71.39 | 1.707 4. 27.J%67.12-75.66 | 55 |0.923 | 2.31
13 | 45 | 43 | 43.75 | 1.004 2788 | 11.02-16 48 b 0.923 2.31
14 55| 83 ¢ 53.62 | 0.923 23T 51.81-55,93 52 0.919 2.30
15 | 66 [ 70 | 64.48 | 1.305 | “9.26 | 61.22-67.74 | 51 0.920 | 2.32
16 71 49 | 46 | 47.70 03%:5 2.41 | 45.29-50.11 50 0.944 2.36
IT [ 646561 62.51 4 1\.‘2{]5 3.01 | 59.50-65.521 49 |0.965 | z.41
18 | 45| 46 | 43.75 [\ 004 2.73 | 41.02-46.48 46 1.054 2.64
19 9 6L ) 62 | 59 55y 1.075 | 2.69 | 56.86-62.24 | 45 | 1.001 | 273
20 | 521 46 i':-({ 6671 0.919 | 2.30 48.36-52 .96 45 1.064 2.73
21 a7 68';\65 .%7 1. 35? 3.3% | 62.08-68.86 45 1.094 2.73
22 ég\ ;.‘i!:.‘ 57.57 [ 1.006 | 2.51 53.06-60_08 38 1.439 3.60
23 ] 5bNDD 1 53.62 | 0.923 | 2131 §51.81-55.93 | 35 |1 675 | 4 19
2L | BW52 | 4967 | 0.920 | 232 | 47355109 | 20 | 1 o096 | 4 81
25 \1 o0 | 48 | 48.68 | 0.044 | 2.36 | 46.22-51 04 | o5 2.255 | 5.64
g N

Substituting these values in Equation (6.20) and using the X, for
each of the 25 individuals, we obtain the sy, for each individual, These
Values. are recorded in column (5), Table 32. Using the confidence
coeflicient of 98 per cent, we find from the t-table that the value of f.02
form =N -2 =123 25. Therefore, for any particular value of Xo
the upper and lower limits of the confidence interval will be ¥ -+ 2.85vs

and Yg — 2.5s,,, ‘The valves of 2,555, are given in column (6), and the
values for the confidence interval, in column (7).

In column (10) the values of Las8y, have been recorded for values of



Crmar. VI] ESTIMATION OF POPULATION PARAMETERS 123

X {column (8)] arranged in descending order of magnitude. Tt is clear
from column (9} that the crrors of estimation ineresse considerably as
the value of X, reccdes from the mean of the distribution of X. Cor-
respondingly, the confidence intervals widen and reflect the increase
in the errors of estimation.

CoxrioeNcE Livites st ‘ToLEraNce LiviTs

A distinction should be made betweon confidence limits and tolerance
limits. The latter has proved to be a useful statistical concept in the
quality control of manufacturing products and probably can be applied to
other fields. A~

The problem in setting up tolerance limits is that of determining
limits from the sample information which will include, on the average, a
specified proportion of the universe or population between thefg (Ref. 33).

P _
A — 2
For an example, let X, be the sample mean and 82\-? H
'S "

the sample variance estimate in a sample of sia¢ n. The tolerance
limits I{ and Lj, which between them will imﬁchde, on the average, a
proportion « of the universe, are given by ~~~\ ’

3

X+, "‘%"J s (6.21)

The value of . can be obtaiged from the table of the t-distribution,
when the value of ¢ has becn ,s;peciﬁed, for example az 89 per cent, 95 per
cent, or whatever, and n —»Nis the number of degrees of freedom. In
contrast, the confidene Umits X + teez raay he said to include the
population mean, g, whth a confidence coeflicient of .

Ty ¥ wreon oF MaxmiuM LIEELIHOOD

We shall ﬂlm%gt}ate the method of maximum likelihood for determining
the best cst{m}&%-es of the pepulation values by applying the method 10 the
deriva-tiqni’;of the estimates of the five paramelers required o specify
a norpdal corrclation surface (Refs. 28 and 19). The five parameters
are“(he roeans of the two normal distributions of the variates X and ¥,
say p and g, respectively; the two standard deviations, ox and ov; and p,
the correlation between X and ¥, i is assumed that the regression
both ways (¥ on ¥ or ¥ on X is linear and that the variables X and ¥
are normally distributed.

If the variables X and ¥ are normally distributed, then the probability
distributions of X, ¥, and XY, namely, P(X), P(Y), and P(X,Y), are

1 (X —pyt
o (6.22)
7x V' 2r '

PX) =
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1 _yoge
2o 2
P = o e o
1 _[(X=pt 2ol =@ (¥ =8, (¥ )
1 o ZT-mL o ] (6.24)

PXY) = Zrexor V1 — pt

With & pairs of values, the simultaneous probability distribution of all

the N values of X and ¥ is
I

X T e T = ! o
PX,, - y Xy Y, s Xu) (211_6}(61’ ,\/m.’) ¢
CELNPRCEVIEE MUET T S

[v.0]

6% X0y ¥ A

N
To obtain the maximum likelihood estimates, the pracess Conaists in
taking the partial derivatives of the probability fungiigns with respect
to the parameters, setting the resulting equatioqsyéqu’al 1o zero, and
then solving the simultancous lincar equaliqneNfor the parameters.
Here, then, the procedure consists in takingMhepartial derivatives of

PXy ..., Xy, Yy, ..., ¥y with respeehtd g, £, ox, ov, and p. Ttig
convenient to work with the natural logdrithms. Hence, for (6.25) we
have AWV
loge P = ~Nlog. 2 — N log,ox =i log,7 — & log, (1 — )
Ay . 6.26
1 2{(5{—#)2 X — (Y - E)+(Y—_§)_‘ (6.26)
2(1 — p9 % A . Cx0y ot

Then log Pis differenfiigi‘ce\d with respect to 4 and the equation is set equal
to zero, giving N\

dlogP ) 2 (X~ 2 (Y — &)
N = _. - p— = i 27
5{.& O 2(1 — pH e} 201 — % exer (6.27)
From which/> erZ(X — u) = pox3(Y — ) (6.28)

leeq ise, diffcrentiating log P with respect L0 £, setting Lhe derivative
equalto zero, and reducing, we get
2N
\\‘: i oxB(Y — §) = porZ{X — ) (6.29)
Assuming p = 1,62 0,07 5 0, we get by solving equations (6.28) and
(6.29} the optimum estimates: .

I

7 X (6.30)

£ ¥ (6.31)

"

S

I

Similarly, we may differentiate log p partially with respect to ox, o7,
and p, respectively; set the equations equal to zero ; solve; and substitute
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the values given for 4 and £ in (6.30) and (6.31); obtaining

ox = ‘[2 X (EX. ] = sz 6.32)
w_éﬁzw_%qur .38
EXY _ (zxg\gz}’) 7

= 1. =7

TN oo '_(3“5()2] { =¥y
T 2 _ X4
2 - - & 630
NZXY — (ZX)(ZY)
r N

VINZXT = (ZX)NZY? — (27} _\w %,

Jackson and Fex ‘guson {Ref. 19) have shown that the mfwﬂmum likeli-
hood estimate of p in the case of samples from a popula,tion specified by

or p=

Hl

four parameters—ex = oy = o; u; £; p—is ",\\
N EAT
[2 xy - BHCET

(6.35)

DR SR

This is the case in determining the ,r:e;h&blhty coeflicient, of a test by the
tost-retest and alternative equivalett forms methads.

In the same way, the maxigatm likelihood estimate of p obtained from
samples of & papulatlon bp@1ﬂ<,d by three parameters—ox = or = o;

£ = E; P—ls
(23X + 1)
ZXY TN

(EX 4+ =¥)2
& Ew+2w e

This is ph@oéa;e in determining the reliability coefficient of a test by the
split-halfimethod.

(6.36)

V EstiMaTING THE REL1ABILITY OF TEeTS

The reliability of mezsurements s a fundamental tenet in all observa-
tional and experimental sciences. The problem of the reliability of
instruments of measurement has, however, received the greatest. consid-
eration in psychology, education, and sociology.

The traditional method of determining the reliability of a test is
through the use of the product-moment correlation coefficient. The term
“reliability of a test” as introdueced by Spearman in 1910 was defined
as the (correlation) ““coeflicient between one half and the other half of
several measurements of the same thing.” (Ref. 19.)
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Until recently, the only methods available for measuring the so-called
“reliability of a test”” were (1) the test-retest method—doing tho same
test twice; (2) obtaining the correlation between the scores on equivalent
forms of the test; (3) the split-test method—consisting in obtaining the
correlation coeflicient between the scores on the odd and cven items of
the test. This eorrclation gives an estimate of the reliability of cach
half of the test. To obtain the reliability of the whole test, application
is made of the Spearman-Brown formula.

Recently, other approaches to the problem of obtaining reliability
have been made. A number of methods, both the traditional and\the
more recent, will be discuszsed and llustrated in the following DAZES.

Problem VI.9. Comparison of the split-test and the maximumikeli-
hood methods, We shall compare the results from detem}mmg the
reliability of a test by the split-test method, using the pmdu(,t—moment

TABLE 33

Tre Scoubr or Ao Raxpowm SavrLe oF\Za
SropeENTs on A Broroer Twah

Y

Indi- (dd, Evm& &
vidual X N
1 29787 226
2 2t 111
3 2 237
4 T 178 161
m'{’ 192 188

ne.
&\6 104 03
M N\ 7 191 201
M, 8 148 168
& 9 125 123
N 10 141 157
N\

A4 1 171 178
L\ 12 168 182
N 13 129 118
Re N 14 192 229
\”‘z 15 76 17
16 172 180
iy 25 994
18 102 144
1% 177 176
20 100 125
21 148 150
22 180 184
23 179 193
24 141 121
N L R -

Total 4038 4178

-
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correlation coefficient, with the results obtained from applying the
maximum likelihood method. The comparison was raade on a test in
biology from which the scores of a random sample of 25 students are
listed in Table 33.

Before applying the split-test method, it was necessary to test the
underlying assumptions, namely, that the means on the two halves of the
test are equal and that the standard deviations are equal. The ftest
for the former (& = 1.917) and the F-test {for the latter (Fy = 1.238)
give probability values P > .053. Therefare we may consider the assump-
tions satisfied and proceed to determine the correlation between the fwo
halves of the test by caleulating the product-moment correlation«péefi-
¢ient and by getting the maximum likclihood estimate. A\

The product-moment correlation coefficient between the ‘«co\r{ xon the
two halves of the test is given by

o
27N
< 3

_szxy — (2 _)@_} o\

TR

0.93
z\ {or )

29,812, 41
\/(98 930, 24)(35 816.64)

= 0.
R \
The maximum kkelithood estinate is gbwe 1 by
Y _(BX + ZY)? o
’ 2xXY N .",; \

- . (BX /Y

zX? 4 IV ¥

2(704,643) =,850,053.12
681 148 7%\343 — 1,330, 053.12

Although the diffezence between the {wo estimates in this problem
can not he said to\Be’large, we accept the maximum likelihood estimate
as the optimum',&tim ate.

Problem ¥1.10. Comparison of the product-moment correlation
coefficient{ahd the maximum likelihood estimate for determining the
rehabﬂ\y 'of a test by means of the equivalent forms method. The com-
par@en-of these two methods of estimating test reliability was made on
fhlSSC}Ole& of two forms of a reading fest made by a random sample of
30 students. The data are given in Table 34,

It wag found that the value given for the product-moment correlation
coefficient was 0.9164 or 0.92 and the maximum likelihood estimate was
0.9076 or 0.91. Although the differcnce in this problem is small, we
accept the maximum likelihood estimate ag the optimum.

Tt should be ohserved that previous to the application of the method
of estimation, the fundamental assumptions underlying the equivalent
forms method of testing reliability have been tested. The assumption
here is that the standard deviations on the scores of the iwo forms of the

= 0.9093 {or (L91)
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TABLE 34
Tme ScorEs ox Two Forus oF 4 Reanine TesT OF A
LLawpom SamrLe oF 30 STUDENTS

Individual Form B, Form A,

X ¥
1 48 39
2 47 45
] 46 42
4 27 35
5 59 53 N\
6 74 64 e
7 30 27 .;’\"\
8 50 41 \J
9 56 50 AN
10 41 13 \)
&
1 2 BN
2 27 BV
13 37 Rt
14 59 {54
15 86 N\ 38
16 43 42
17 R 45
18 o 49 39
19 S 29 28
20 N\ 50
2L M 27 26
22 ) 49 46
25 34 26
N 24 14 23
N 25 44 50
AN "4
A\D 26 48 48
§..§:T‘ 27 61 B4
AN 28 70 69
K4 29 58 49
DN 80 50 60
O N = 30Total 1332 1285

test are equal. The F-test (F, = 1.32) showed that this assumption was
satisfied,

A more stringent test of the equivalence of the two forms of the test
can be made by applying three sample eriteria proposed by Wilks (Ref.
34) for testing the equality of means, equality of variances, and equality
of covariances. The L: criterion (two variables) is

= S11800 — 87,
Lm,\'::: - 1292 12 _ _ (637)

Bous + o) + HE —~ X [y, — (X — X)7)?
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where X, and X, are the means; s1, and sg are the variances; and s is
the covariance, between the two forms.

Although tests of significance may be made by the use of the prepared
tables, an exact level of significance is given by

P=L, %2

From the scores of the thirty individuals given in Table 34, we make
the following calculations:

X_l = 44 4

X, = 42.83

S11 = 5%]64,038 — (44.4)7 = 193.24 Q
Seo = w5 [59,420 — (42.8333)7] = 146:2751 A

512 = [(61,676) — (44.4000)(42.8333)] = 154068202
5 =% + %) AN
— 1(87.93) O
= 43.62 ...'\"

Substituting the values required in (6.37), welgtt '

N
L. = .8268 70>
and P = L 02 = (826§)1* = 07

Therefore, we conclude that the two forms of the test are parallel or
equivalent. *

Problem VI.11, Determiniug;’ the sengitivity of a test. Jackson
(Ref. 18) applicd analysis of varidhee methods and the methods of testing
statistical hypothesis to thé problem of determining the reliability of a
fest.? He treated foun d'{ffé‘rent problems; the determinations of (1) the
existence of a signiﬁcaﬁ practice effect, (2) whether or not the test
measures the capaeities of the individuals tested, and the estimation of
(3) practice effcet, Jt'it, is found to exist; and (4} the relative importance
of the random ¢ rors of measurement with respeet fo $he true moeasure-
ment of theMcapacity of the individual. Jackson introduced a new
statistic,y) which he called the sensitiviiy of the iest, defined as the ratio
of thestandard deviation of true scores to the standard deviation of the
ditribiition of errors of measurcment.

KThe method of Jackson is applied to the scores of a random sample of
30 students on two forms A and B of a reading test, the same data as
were uzed in Problem VL.10. The original data and ecalculations are
given in Table 35.

1t is assumed that each individual’s score on the test is the sum of a
number of independent components and that the analysis gives a measure
of the influence of each. One component is the difference in ability

. # The student may find it advantagecus to follow through this method after he has
gtudied the analysis of variance (see page 226). For the method of testing statistical
hypothesis sce page 63.
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between the individuals tested. Noting the scores of the individual
students in columns (2} and (3), it is observed that the students on the
average make higher seores on form B than on form A. Fo‘rm A. 'waf
given first, so that this difference is called a measure of the ¢ bractice

effect. Even when allowance is made for the influence of practice effect,

TABLE 35
HooRms oF FREsHMAN STUDENTS IN THE (JOLLEGE OF AGRICULTURE 0X FORMS A ANp B
oF 4 RlEapivg TEsT

Heore on
Student B Sum of seores ]ﬂ:';i{ii;o
Xo. Form B, Form A, X 4V PaN Y"’
X. Y O\
o o -
(1) (2) (3 1) &N (5)
—_— - '\: -
1 16 39 §r3 7
2 47 45 92 2
3 46 2 LN 8 4
4 27 348 i { G2 —&
5 59 538\ 112 6
6 74 & 138 10
7 30 P\ 7 57 3
8 50 R N 91 9
9 a6 * ’ %50 106 6
10 a N 43 84 -2
11 gé.,’\ 25 49 —1
12 ¢ 32 59 -
13 X7 34 71 3
14 N, RO 54 113 5
15 \ 38 a8 74 -2
16 ) a2 42 84 0
17 \Y 41 45 86 —4
18.%..: 49 39 88 10
~1‘9‘ 29 28 57 1
2 57 50 107 7
mJ

\ 321 27 26 53 1
22 49 46 95 3
23 34 25 60 8
24 i4 23 37 -5
25 44 50 04 -8
26 458 46 94 2
27 61 64 125 -3
28 70 69 139 1
29 58 44 107 9
30 ] 50 60 110 —10
Sum _ 1332 _ 1285 - 2617 ] 47
Sum of squares 64,038 50,429 247,719 1015
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the scores on the two forms differ considerably. It is assumed that these
residual differences are attributable to the errors of measuremens of the
test used. Possibly other factors exist, such as possible fluctuations
in the ability of the individual students and differences between the twa
forms. Bince these factors are not isolated, they are included—if they
exist~—in the measurement of error. The method used to measure the
effect of cach of the components is that of the analysis of variance, which
consiste In breaking up the sum of squares of the deviations about the
grand mean into parts assigned to the rospective factors. In this way,
the importance of the influence of the respective components can be
established and conclusions can be made with respect to the value of 4} the
test as & measturing ingtrument.

The caleulations involved in the analysis of variance are as f6laivs:

(1) Calculate for each student the sum of the scores and thedifférence
between his scores on the forms as indicated in columns. (‘l\) and (5),
Table 35.

(2) Calculate the sum and sum of squares of the\nhmvrlcal values
in each of the columns (2), (3), (4}, and (5), and redord these in the two
bottom rows of the table. Note fhe following chqus on the calculations:

(a) 1332 -+ 1285 = 2617 \

(b} 1332 — 1285 = 47 Y
(e) 247,719 4 1015 = 2(64,938 + 50 4?9)

{3) Caleulate the sum of Squareay f@r cach component as follows:

[Cook

.m\30 ] = 470.683

(a) For error: = [1015

26172 o
{by For hetween Indl\xﬁuala 3 [2-’17,719 - —(—3—0—)—] = 0714.683

{c¢) For pract&ze effect - [@] = 36.817

30
2617
(d) Tor i}\ﬁ;a‘{: 64,038 + 59,429 — S%O—)_ = 10,222,183

Thqséjw;élues are then recorded in an analysis of variance table {Table

36 ) '<‘} v
TABLE 36

ANALYRIS or VArTANCE 0F ScoRES oF FREsuMEN oN Two Forvs or & Ravmc Trer

. Dogrees Hum of .
Bouree of variation of frge Jorm ;qua,res Mean square
Pl‘actine eﬁect 1 3G.817 36.817
_Betwcen individuals 29 9,714,683 334 .989
Ereor 20 470.683 ‘ 16.230
Total 59 10,222.183 ]

——————
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The following applications can now be made of the results shown in
Table 36: o

An estimate of the standard error of measurement of an Individual
score, g, is obtained by taking the square root of the error mean sguare.

We get '
gz = 4/ 16.230 = 4.03 score units

This gives a directestimate of the absolute aceuracy of the measurements.

The next problem is to test whether there is a significant practice’
offect, that is, if it is significantly different from zero. This hypothesis
is tested by calculating first the ratio of mean square due io .Qra.ctice
effect to the mean square due to error:

36.817 )
| = 6230 _ 2 O
We then refer to Snedecor’s table (Table IV, Appendi%) of F with degrees
of freedom n; = 1 and ne = 29. We find that the"b per cent point of
F is 4.18. Since the observed value of F, £2% is less than 418, we
eonclude that there is'no significant prac-t-ic({\eﬁect.

The next step is to find out whethe ‘the tost measures sufficiently
accurately to distinguish among the individual students, 'This is deter-
mined by taking the ratio of the mean-square between individuals to the
error mean square. ‘Thus: X oW

P 934.989
W +16.230

F

= 20.64

Referring to Snedecar”s’jt@ble with 4 = ns = 29, we find that for n, = 30
and nz = 29, F os =185 and F o, = 241, Therefore we conclude, since
20.64 is greater than 2,41, that the two mean squares diller significantly
and hence thatdhe test mensures with sufficient accuracy to distinguish
between thedndividuals tested.

The figxt problem is to determine the relative accuracy of maoasure-
mentthat is, the relation botween the magnitude of the errors of measure-
menitiand the size of the differences among individuals. This is given by

..\,faiékson’s measure, v, called the sensitirity of the test:

) 2

s
"Y:_,.
F

where o, is the standard deviation of the distribution of ahility in the

population sample, and ¢ is the standard deviation of the distribution of
errors of measurement,

The unique estimate of 7 18 obtained ag follows:

@) ’.Sul:‘)ttraet the error mesn square from the moean gquare betweel
individuals.
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(b)
()

Divide the difference by twice the error mean square.
Take the square root of the quotient as an estimate of

From the values in Table 36, we get

(a)
(b}
(e)

334,989 — 16.230 = 318.759
318.7569

sa6.03) ~ 0%

Bstimated v = +/9.82 = 3.13

The confidence interval is set up as foilows:

{a)
(b)
(e)

(d)

(e)

Calculate the ratio of the mean square between indiv iduals toﬁle

error mean square, denoted by F
Obtain the ¥ 4 and Fg pomts of the distribution, Of F‘ from

Bnedecor’s lable. Ny
The lower limit of the interval, uging F 5 for emm,ple, denofed by

v, is given by ...\"
- (F 1 v
ToNTL 2 o
The upper lmit of the mtenal, 'y,\ﬁsmg F 4 for example, is
obtained from )

(6.38)

(6.39)

Wo may make the stat,er}iént. that
sf;\ y<r<7

7

and the probability tha.\the statement is correct is .98.

For our problem, e get

332050

(8) F =355 = 20.64

6,230

(b) Rih= 2.42
(NY O moet 1
Aol = (20U 1 104
=g 27

@ 53 = \/‘ng LYY,
(&) 194 < v < 4.95

Jackson gives the following

relation between the sensitivity and reli-

ability coefficient in the population:

- P ' 40
¥ = 1 — P (6 )

where p denotes the population reliability coefficient.
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Trom Jackson’s Table XI (Ref. 18}, the values of p covresponding to
=194 and 7 = 4.95 are approximately .80 and .96, respectively,
The true values of v and of p are, of course, unknown.

Problem VI.12, Determination of the reliability coefficient by means
of the analysis of variance. Hoyt (Ref. 17) developed o formula for
estimating the reliability of a fest alzo by means of the method of analysis
of variance. The data used in the caleulation are the number of correct
responses to each ifem and the score on the test for cach individual.  The
total sum of squares 18 broken down into three components: {1} between
individuals, (2} between items, and (3) residual component or crrov.

By subtracting the sum of the sumn of squares wmnong dividuals
and among items from the total, the residual sum of squafey,is used to
estimate the discrepancy between the obtained and the ¢ (i variance.

The necessary caleulations ave developed as foll u}w Tihh, seb up a
table for tabulation of the required data as shows Jdn *Iable 37; where

.\\
TABLIZ 3y
TABTLATION oF DaTa Nucrssary Fon DDJ.I:.H.\TI\I'\L: RI pramiLrry By ITovr's METHOD
t\\.o
&
Individual — Item \ Brore
1 2....2AW. &
1 X ... X A
2 L ‘”." .......... -\-:4\'.1"
e
n \\ : oo o ool X \.1 R
O ' ";‘ .
I A et e S
:‘}?otal ZX;; - CTE > X | S‘ \ Xy
2. T = LA

:"\:s.
1’§‘ vk i =12
is t]m number of mdlwdua,la X

o0/ the sth item, w
Let ug deﬁne

", #; k denotes the number of items; #
s denotes the score of the ith individual
hich is Prosumably 1 or 0.

Z Y X,
Grand mean, X
where N = kn.

Mean of columns, J-fa., =+

Mean of rows, X o =
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The sum of squares between items is
DRI LQx) QY
~ & (Yo - X )p=2 “ﬂ -2 ‘N—u (6.41)
The sum of squares between individuals ig
Z Z E(Z Xe) (ZZXm)
(X:— X — (6.42)
N
Since X, = 1 or 0, KoY
X = X% \: )
and the total sum of squares is o ":}‘.
D DR G R )
. & (Xei — X )= Ar xoi\f - n"i—?l\?_g (6.43)

\ b
where ny; = Z Z X, or the number of co;rgof, responses of all individuals

on all the 1fem=~ and 7 is the nu,mber of incorrect responses.

We shall apply this method tq&ﬁ~exam1natwn in college mathematics
consisting of 80 items (b = 80 for a class of 119 students (n = 119).
The culeulations—only summary values—are

(1) The sum of squar{é Detween individuals:

3@ 03w

N <gﬁ;g): 106,820
(gi—i’he sum of squares between items:
LQx) Q2%
R
52181'834 - (%2512%)2 — 383.6201
(3) The total sum of squares:
mny _ (6216)(9520 — 6216) _ o1 o o1

N - 9520
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These values are then recorded in Table 38, Analysis of Variunce.

: TABLE 38
ANALYSIS OF VARIANCE OF THE Beouss o A TEsT 1N CoLnEcE MATHEMVATIOS
Bource of Hum of Mean . | Hy pothesis
Py IvF. F tosted
variation BQUATrCS squares J ostec
Between " ) oD Rejeel,
individuals } ..... 118 166, 8426 1.4139 (a} ].20 zjee
Between } ....... 79 | 383.6201 | 48560 %) | 28170 | Beject
1fems
Residual......... 9322 1606, 8549 0.1124 (e}
Total........ 9519 | 2157.3176 O\
-~
_ () 14139
@ L (c) = m = 820 NP < .?1,:"
4 85680 |\
—@— z28‘]7wP<.@}

® " "o

The following uses ean be made of the ;e;sﬁlﬁs in the table:

(1) To test the hypothesis that thereis"no difference between the
means of individuals. We calculate theratio of the mean sguare due to
individuals to the mean square gf j'residual: F o= (1}—%%2 = 8.20. We
then refer {o Snedecor’s table QfF“ (Table TV, Appendix) with degrees
of freedom #, = 118 and ny.="9322. We find that the 1 per cent point
of F for n; = 100 and ngﬁ * is 1.36. We could interpolate to get the
value for n, = 118 an%b‘z.f*— 9322, but this operation is Unnecessary, since
1t is obvious that the obtained value of F will be much greaicr than the
table value. Therafére, wo conclude that the fest mogsures sufficiently
accurately to differentiate among individuals,

{2) To 'gﬁ@n"a,te the precision with which the test measures, we may
compute&e reliability coefficient, T, 88 follows:

_a~c _ 14130 — 01724 -
~O T Ta T T 1ame o =088 (6.44)

A measure of the absolute accuracy of the test is given by the standard

error of measurement of an individual score, sy, whoere

_f residual s.s.
D F. between individuals

1606.854
= —~11—8-_2 = 3.068 seore units

Problem VI.13. Determination of the reliability of the test by the
method of rational equivalence. Kuder and Richardson devoloped a

Sg
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method of determining the reliability of a test, which they called the
method of rational equivalence (Ref. 20) The term *“rational equiv-
alence’ arises from the conception of a given test as being equivalent o a
hypothetfical parallel form where cvery item on the one form is inter-
changeable with the corrcsponding item on the other and thus where
each pair of items is equivalent with respect to content and difficulty.
Furthermore, it is assumed that all corresponding correlations among the
items are equal,

A number of formulas representing varying degrees of rigor are
presented. Only the one represented for general use is given here [Ref.
20, Formula (203} Q)

2
ry= 2 T MY (y(6.45)

n—1 o} PR

where 7, is the reliability coefficient; », the number Qf»}j;&ins; o, the

variance of the test ltems; and pg, the mean variance (ifthe items.
Jackson and Ferguson (Ref. 19) point out tha‘t the derivation of

Formula (6.45) can be made on the basis of the equn alence assumption

only. We present their derivation: \\

The variance of g test of n items, as a fu‘m,tlon of the item variances
and interitem covariances, is

8= Z —!— 22 T45:5;
S T <) (6.458)
= 4{82 + n{n — 1)?'{;;3;3;

where s} = variance of Re test
= variance of item ¢
87 = variandg’of the item j
74 = corzglation between items ¢ and j
8 = aforage item variance
Ti8:5; = Average item covarfance

?Eﬂ number of items
Agsuming the existence of a hypothetical parallel form of the test, also

of 2items, the variance of the sum of these two tests is

st = 2ns} + 2n(2n — L)ryss; (6.46)
where 52 = variance of the sum of scores on the two equivalent formsg
of the fest, :

1t is known from the correlation of sums that
— 2s2(1 + 1) (6.47).

where 7, = eorrelation between the test and its hypothetical equivalent,
or the reliability coefficient.

Lo
v
|
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When the values of 7 in (6.45a) and 2 in (6.46) are substituted in
(6.47) and the equation is solved for Ty, We have
I 3l
re =L i?i (6.48)
which formula is identical with (6.45).

It is to be noted that the assumption made in this derivation, that
FySS; = Tupsesp = Fpsps (that Is, that the covariances are on the average
equal), is somewhat loss rigorous than in the equivalence assumption,
In the latter it i specified that Ty =Ty =y, oand g, = &y, where the
primes ('} refer to the hypothetical equivalent form. .

As an illustration of this method, we present the results ofvehe admin-
Istration of an Industrial Relations Classification Test qfllbO test items
t0 & college class of 61 students. An analysis of the gedres on the tests
gave the following values:

Test variance, of, = 169.5067
Average variance of the tost items, E\: 148209

at ¥
\
AN

Reliability coeflicient, r,, = " __{% — npg
=N Y o3

NN z
- 100%269.5067 — 100(.148299)
89 169 -
SN2

Formula (6.45) is not in “an efficient, form for caleulation. Hoyt
(Ref. 18) sugpests the ful]@-‘ing variant:

.,_’ié‘?z kSs-f—S,-'—TT-f—k
?‘::‘xn =1 %S —_i'('z ) (649)

where T = gum_of stores of all individuals
Ss = sum_ i Squares of each of the scores for all individusls
8; = SUmof squares of each of the total correct responses for all
.&tems
&5 number of individuals taking the test

&

_(\® = number of items in the test
\Applying (6.49) to the data from the shove test, we get:

ry = 200 62(52,734) - 42,099 — 161301615 + 62)
9 T GarEay

62(52,734) = (1618)2

.92

]

Drarers op FreEEDOM

We have used the concept “degrees of freadom & number of times
without defining it. Sinea it is such g fundamental concept in statistics,
we shall try to add 40 an understanding of it by referring for its interpre-
tation to three analogous settings——physics, geometry, and statistics.
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Physical Interpretation. A rigid body which can move ahout in
space without changing the direction of any line in it is said to have a
motion of franslotion. 1t cun also turn about any point, say P, without
the position of P changing—a motion known as a metion af rolation
about P. It can again have a motion compounded of a motion of trans-
lation and one of rotation.

Take any convenient frame of reference, O(X,, X., X,) fixed in a
rigid body, The position of the rigid body st any instant is defined
uniquely by the position of O(X,, X, X3). Wo can specify the position
of the body axes by six parameters, for example, the Cartesian coordinates
e of O, with respect to fixed axes, and the three angular or polar codrdi-
nates ¢ of O. Therefore, the rigid body is said to have 6 deguees of
freedom. The 6 degrees of freedom correspond to the pOb]tIOD\d,P{ Bordi-
nates just specified. Of course, other equivalent sets of bebrdinates
may be taken. However, if a definite relation er relatiob®are fixed or
assigned belween the six parameters or positional coordmatca then the
rigid body is said to be subject to geometric or Mnemafac constraint and
has less than 6 degrees of freedom. Tach restrictighreduces the number
of degrees of froedom by 1. The fixture of onépdint of the body would
constitute a constraint and reduce the degrees of freedom of the body
by L. Also, a point might be restricted t41i€on a curved guide which in
turn is constrained to move in a prcscnhed way. Sliding or rolling con-
tact iraposed hetween the body and cither stable or movable guides
represents a more general kind of onstraint. The constraints may be
represcented by functional relatiens connecting the positional coordinates
or parameters {Ref, 15). <\

Geometric Interpretationi. The geometric interpretation of dogrees
of freedom grows out 96 a consideration of the conceptions derived from
the geometry of pédimensional space. The geometrical or vecforial
representation of 3 &ample a8 & vector* with n orthogonal or mutually
perpendicular {,&mpononta was introduced into statistics by Fisher (Ref.
8). Fle c*m%d out the first systematic investigations of the problems
unflvrlwnw dhe exact sampling distribution of a number of statistics and
thus lafdy the hasis for the solution of many theoretical problems of
s’ratistlcal distributions.

It is well known that a one-to-one correspondence may be set up
between all real numbers, z, and all points on a straight line. A similar
torrespondence exists between all pairs of real numbers (#y, x2) and all
points in a plane: also between all triplets of real numbers (21, zz, )
and all points in a space of three dimensions. We may, then, generalize
by considering any system of n real numbers (z;, s, . . . , z.) as repre-
senting a point or vector # in the nth-dimensional (Euclidean) samplespace,

*A vector is a quantlty which has magmtudo and dircetion,
sisting of one single row or column,

It iz a matrix eon-
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V.. A point in 2 line has freedom of movement in one dimension; that
is, it has 1 degree of freedom. A plane has two dimensions and 4 point
on a plane has 2 degrees of freedom. Likewise, in ordinary space of threg
dimensions, a point in this space has 3 degrees of freedom. Generalizing,
& point in #~dimengional space may be said to have degrecs of freedom.

The numbers or values of the respeciive elements of & sample, &, x4,

+ s To, are, then the coordinates of the sample point P in multiple
dimensional space. The dimensionality of the sample point P is the
number of observations, n,inthesample. There aren degrees of [ recdom,
However, if a restriction he placed on the sample point, the nunther of
degrees of freedom is decreased by 1; that is, its dimension alitgasyreduced
by 1 and thus becomes n — 1, Correspondingly, each additional restrie-
tion or seetion through sample space carries with it an_additional redue-
tion in the dimensionality or number of coordinates, X Thus to restrict the
point in three-dimension spacge to a surface, one contlifion is imposed on
its coordinutes. To restrict a point in space bf\three dimensions to a
eurve, it is necessary to subject its coordinate‘{xﬁo two independent eon-
ditions (Ref, 31). LK<

An illustration of the reduction of diménsionality i given by consider-
ing two planes whoge equations are | N

1) 2~y 18 —1-9
(2) 2~ p 5 + 3 = ¢
In (1} only two of the value§ are independent ;given z = § and y = 12,
the valne of 2 is fixed as 25" Likewise in (2), givon any two values for

in terms c.)i\_é,::"ér for y and 2 in terms of z.  Thus: 2 = @}@; = ;

Now, ?hb.fe iz only one independent, observation. That is, by sclecting
vaj;ggg%\fbr Y and caleulating the corresponding va,

. lues of x and z from
tl"msé equations, any desired number of points on ¢

The dimensiona-lity has thus been reduced o 1.

Statistical Interpretation, 1 its statistical application, the number
of degraoes of freedom is the aumber of free variableg in the problem or in
: : variables connected with it For each
restriction imposed upon the origing) observations, such us in the estima-

tion of g population vale from the sample, the number of degrees of
frecdom is reduced by 1. '

It has beon previously noted that the unbizsed estimate of the popula-
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tion variance from a sample, n, is obtained by dividing the sum of fquares
of deviations of the individual observations from their mean byn —1,
which is the number of degrees of freedom. In this case, it is observed
that this is the number of deviations reduced by the number of parameters
estimated from the sample and used to establish the point from which the
deviations arc measured. In this case, the mean is found from the
sample, and henece the number of degrees of freedom is one less than the
number of observations.

In the case of establishing a regression line among a distribution of
observed values, the straight line will fit any two observations with no
residuals.  Thus, in fitting the least-square linc to 25 observations 4i{cre
are 23 degrees of freedom. Two degrees of freedom have been uscd up in
estimating the two parameters in the regression equation (seg.p'a?gc\ 88).

The principle that for cach relationship imposed upon the’ original
ohservations there is a corresponding reduetion in the nuniber of degrees
of freedom originally available will be found to apply Qxb’ughout statis«
tical procedures.s O

PROBLEMS AN
1. Bhow that the maximum likelihood est{m%té’ of the population reli-
ability coefficient, p, for the case of the'split-test method is

(2%, + V)

PN W
= A AN EX! —F‘_E?l)z
ZX? 4:..sz. _ X 1 2V SN

when X; and ¥; denet ith% scores obtained by the #th individual on
the odd and even it&s of the test, respectively; N, the number of
pairs of values; amghyg, the correlation coefficicnt in the sampled popu-
lation of X and ¥~
2. Set up theegnfidence jnterval with a confidence coefficient of 95 per
cent for pN:ﬁe population correlation coefficient. The samp!e value
iz r =y :,7:7, the eorrclation between scores on Miller's Analogies Test
and the Otis Intelligence Test for a random sampling of 50 graduate
SQ;t‘zlénts. Any of the following may be used: The exact tables of the
r-distribution (David, F. N., Tables of the Corrclation Coefficient,
Biometrika Office, London, 1938); the transformation of + suggested
by Pillai (Pillai, K. C. 8., Sankhya, Vol. 7, Part 4, pp. 41.5—422, July,
1946); or the logarithmic transformation due to R. A. ]:j‘lS]’.lel‘.
The probability for the inequality, where ¢ is determm:ed from the
normal scale corresponding to & given confidence coefficient o (say

0.95}, is

$ For equivalence of degfees of freedom to orthogonal linear functions, see the
discussion of Analysis of Variance, Chapter X.
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1 1 -
—a < VT = 3)/2 log [Elf—%jr—g] <a
3. Given: ¥z = .6570X -+ 33.76

as the equation for estimating the score on g mid-gquarter exami-
nation from a knowledge of the score on Miller’s Analogies Test.

Sum of squared z-deviations = 10,584.88
Bum of squared y-deviations = 9788.50

n = 50
X N\
Set up the confidence interval for b,, with a confidence coeffigient of
99 per cent, Let By x be the population value. O\
— Vv E — Xy . \\
Variable, ¢ = Gl . X ) N

has Btudent’s distribution with # — 2 degrew .ij\fréedom.

1
- _ 2
% p— oY Y{Q

4. With the aid of Nair’s tables (Ref. 22y find the 95 per cent and 99 per
cent confidence intervals from the foMowing values of the mediun:
(a) Median =38, ¥ = 25 _«NVe) Median = 42, & = 229
(b) Median = 18 N = 25 N7 (d) Median = 21, N =219

I

5. Set up the 99 per cent gonﬁdence interval for the difference between
the percentagos give{}}ielow obtained in two public-opinion polls:

n= 3000, "py = 52 gy = 800,  p, = A48

8. Set up the 98'1:]61: cent confidence interval for the difference in per-
centages Qgﬁalﬂ(ﬁd on the sume sample:

()68 per cent answered “yes? n = 500
LN 32 per cont answerod “ng”

7. Bl;m’ in advance the size of sample necessary to provide from the

\m wample an estimate of P g0 that the confidence belt will be of breadth
about .05. Take a confidence coefficient of .95, The value of P
from the sample is .60. [See also: Finney, D. J., “Lrrors of Lsti-
mation in Inverse Sampling,” Nature, Vol. 160 (1947}, pp. 195-6.]

8. Bet up the fidueial limits of the true mean difference baged on the
data from the controlled experiment given in Problem 2, page 98,
Use a fiducial probability of 95,

9. Set up the fiducial limits of the variance of the distribution of diller-

ences based on the data in Problem 2, page 98. TUse a fducial
probability of 90,
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10.

11.

On a particular intelligence test a pupil received an 1.Q. rating of 98.
On this fest the standard error of an individual seove iz 4.51 LQ.
points.  Set up the confidence interval for the true score of the
pupil, using a confidence coeflicient of 95 per cent.

Given: Y. = 6570X 4 33.76
which is the equation for predicting Yg, the score on a mid-quarter
examinalion from a knowledge of a score, X, on Miller'’s Analogies
Test.

= 683, 52 = 216.018, s = 199.765, n = 50, X = 63.32. £\
Determine the confidence interval (99 per cent) for mld-quarter
score for the following scores on Miller Analogies: £\
(2) 99; (b) 69; () 27. G\
(d} Ju\plam yvour answer to (a) above, P\ 3

12, The following table (based on the 1940 Cenaus)@xﬁ&s the percentage
of adults over twenty-five years of age by states who had not com-
pleted more than four years of school: AN

O
Percent- Pureent- Percent-

Stute age | State A\ JYage | State age

Towa............. 4.1 Dist. of & olumbla §.2 | Rhode Island.. .. 13.7

Oregon. .......... 5.2 Ohio . . %o .. . 8.4 |Marvland........ 15.3

Tdabo ... ... ... 5.2 |Nevada.......... %.8 | West Virginin.... 16.5

Utah............. 5.5 (iol‘xado ........ 9.0 [Flonda.......... 18.5

Washington .. .... 5.9 § Wisconsin . ...... C 0.4 | Texas........... 18.8

Nebragka ... ... ., 6.00 |[Winois.......... 9.6 |Arizona......... 19.4

Koansas. ... ... ... 6.00] Massachusetts. .. 10.1 |Kentucky. ...... 20.2

Vermont... . .... N Michigan........ 10.2 | Tennessee....... 21.7

Wyoming... ... ,\ 7.1 | Missouri........ 10,3 | Arkansas..  ..... 25.1

South Dalkota . &7 7.2 | North Dakots. .. 10.8 | Virginia,........ 23.2

Montans,. . \ . 7.4 | Conneeticut..... 11.2 {North Carolina.. 26.2

Maine. . ‘;\, .. 7.4 | New Jersey...... 12.0 |New Mexico.. ... 27.3

Min nmsom 7.5 | New York....... 12.1 [Alabama........ 28.9

Indlana NS 7.7 | Pennsylvania. ... 12.3 |[CGeorgia......... 30.1

Califtowgtia,. ... . 8.1 |Delaware........ 12.9 {Mississippi...... 30.2

N eW\Hampshire. . §.1 | Oklahoma. . ... 13.5 | Bouth Carolina... 34.7

Louisiang..... . -. 35.7

13.

Problem: Set up the tolerance limits for years of schocling of adults
(take o = 00 per cent). How may the results be used in analyzing
4 state’s educational program?

Students of fiseal policies are invited to study the characteristics and
use of grant-in-aid apportionment formulss in relation to setting up
tolerance limits. (Cornell, Francis G., “Grant-in-aid Apportion-
ment Formulas,” Journal of Admerican Siatzst’acal Assoctation, Vol. 42
(1947), pp. 92~ 1{)4.)
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15. The following data are to be used in the problems below:

ScoRrEs or A Raxpon BAMELE oF 25 STThENTS oN
A COMPHEHENAIVE ExaMivaTion v
CoLLece BroLoagy

Student Seore on items
No. 0dd  Even

1 143 145
2 175 179
3 158 157
4 178 179 ,
& 113 94 O
6 143 140 R
7 136 139 O
8 23¢ 243 R
9 201 207 N
10 203 213 O
~\
11 222 248 \/
12 200 184 \
13 195 191 s
14 126 136 { &
15 186 2080
18 163 186
17 160 3158
18 18808 197
19 406" 206
2 253 249
2N 206 196
y ;)%" 167 154
"g 148 142
)y 24 188 188
725 204 221

NG

L >

P \

roblemas: &

(a) Beforc%ﬁ’fempting the methods of determining the reliability of
the~~b:iology test, test the assumption regarding the means and

...\Szféftﬁ'dard deviations on the two halves of the test,

(159\1'{“ the assumptions in (a} are fulfilled, determine the relizbility
of each half of the test by caleulating the product-moment Corre-
lation coefficient.

(1} What are the assumptions underlying the usge of the Spear-
man-Brown formula? _

{2) If the assumptions in (1) are fulfilled, estimate the reliability
coefficient of the whole test.

(¢} If the assumptions in {a) are fulfilled, calculate the reliability
coefficient of the test by getting the maximum likelibood estimate,

(d) Caleulate the standard error of measurement of an individual

score.
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16. Calculate the reliability cocficient for the English examination by
using the method of rational equivalence. The examination of 297
items was administered to a group of 209 college students. The
following values were computed from the examination results:

X = 144.58 § = 775.0656
g = 27.84 pg = 245
n = 297

.17. Calculate the reliability coefficient for a mathematics test of 75 items
administered to 35 students by using the analysis of variance zacthod
{(Hoyt). The basic data are given in Tables A and B.

.“\
TABLF, A &\
Numerr oF CorrEcrT REgronskes 1o BACH or THE 75 Trgr ITews
Item f| Ttem f | Item f | Hem f| ltem f | Ttem j: Item f | Item  f
i 22 11 n 21 18 a1 7 41 24 '\51 9 61 16 71 20
2 25 12 25 22 22 32 9 42 20\v52 8 G2 16 72 16
3 25| 13 11| 23 23| 33 24| 43 _96% 53 18| 63 (| 73 23
4 24 14 g 24 17 a4 19 24809 RERE 64 8 T4 14
5 8§ 15 17 25 17 35 26 A i3> 16 35 10 65 20 7a 2
6 22| 16 27| 26 9| 86 1XP 46 15| 56 6| 66 19
7 27 17 13 27 14 3T S| 47 4 57 9 67 1l
g8 1 18 19 28 14 38:'13 48 31 5 11: 68 9
9 23 19 23 29 16 |A30 22 49 24 5 7. 69 14
10 18 20 25 30 2§\: 40 18 50 22 60 26: 70 19
e i
\\
\ TABLE; B
so\Torat Scorss or T 35 STULBNTS
Y
,ijm'e f|Beore  f(Beore £ |Seore  f|Score f
'“\5.
s’\\“ _’- B
o\ 5 1 45 1 a6 1 a0 1 25 2
R\ 54 1| 4¢ 2| 35 3| 290 1| 24 1
52 2| 43 1] 3¢ 1| 28 2| 23 1
\ 3 81 42 1 33 1 27 1 17T 1
48 1 41 1 31 1 26 3 16 1
47 1 30 1

18. (a) Took up in some roference text or texts (Kelley, Truman L.,
Fundamentals of Statisiics, for instance) the following methods
of estimating eorrelation:

(1) Biserial r

(2) Point-bigeria] »

(3) Biserial phi-coefficient

(4) Correlation for a fourfold point-surface, or the phi-coefficient
(6) Tetrachoric »
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19

20

—

=

14,

15

(6) Cocfficient of mean square confingency
(7} Correlation ratio

(b) Speeify the types of problems for which each method in {a} is
designed.

(e) What assumptions underlie the use of each method?
(1) How may these agsumptions be tested?

(d) Which of the approximate measures of relationship are converti-
ble to the product-moment scale, and under what conditiong?

. Evaluate the several statistics that arve in use as indices of internal
consisteney in item analysis. ™\

. Plan in advance, from the data in Problem 9, Chapter 5, page 200,
the size of sample such that the probability will be .95 t-l'la,\t"th\e .99
confidence interval of the mean will have a length less than four-

#eore units. N
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CHAPTER VII
NORMAL AND NORMALIZED DISTRIBUTIONS IN STATISTICS

The assumption that measurements are distributed in normal prob-
ability curves underlies much of statistical itheory. The mathemaslical
conditions for normality have been determined (Ref, &). Thalbest
evidence of the fulfillment of these conditions in any particuldr)ease is
that which is available in the ohservations. Somctimes, théh it is sig-
nificant to show that ohgorvations are normally diste 1butcd‘m a1 least that
the available evidence indicates a high probability of suﬁl a’distribution.

The Test of the Hypothesis of Normality, .S,t\andard statistical
methods are available for testing the hypothesis sf\t6rmality. The chi-
square test of the goodness of fit of theorctieal’normal frequencies to
observed frequencies is a general test of the normality of a distribution of
measurements. The test based upon théhcriteria of Pearson is first pre-
sented. Two eriteria provide the basigiol estimating the extent of agree-
ment befween an observed distributiém and the normal distribution with
respect to two characteristics, symmetry and kurtosis.

The eriterion for sym.rnetrj’ié VB = Ve/uh. The criterion for
kurtosis is 8 = pi/ud Foerhe normal eurve, 4/, = 0, and 8. = 3.
Tt is obscrved that these\eriteria invelve a second, ’rhud and fourth
moment. They are no&a ected by the size of the unit of measuroment
employed and aresgnehsures of the shape of the unimodal frequency
distribution. Théeasurement of the form of variation of the distribu-
fion is given Q'}cnns of symmetry and kurtosis, or the flatness of the
mode,

Pearsoi’l’\s Test of Normality. The steps in the process of fitting the
norma}\cune to a serleg of observations by the method of moments are
deaﬁn;bed in detail below.

1. Caleulate the first four moment coefficients.

(a) Moments about the mean and origin of ungrouped data. If X
is the variate, measured from the origin; X is the arithmetic mean; and
N is the size of the sample; then the sth moment coefficient, g., about the
mean is

pe = 11?2 (X — X) (7.01)

In practice, usnally with machine caleulation, it is convenient to cal-

culate first the powers of the observed values of X measured from the
149
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origin. Then the sth moment coefficient, x,, about the origin is

, _ X
TN

7.02)

Then the first four moment coefficients aboul the mean ean be found
from those about the origin from the following cquations:

g =0

SO N (7.03)
Hs = Pl.": — Burms + 2(5“1):t _ .

pao= gy — dunpg + 6% — 36 | (A

'\ -

These equations may be obtained by expanding the hijaﬁ: il (V — X3,
and finding the mean for each term of the cxpunsitugf, soparately,

(b) Moments from grouped data. R

When the original observations are first ghotiped into n frequeney
distribution, it is assumed that all values in achiss interval hove the value
of its central point. Thus if », is the dther of observational values
in the ith class interval and X, is its gdabral vulue, then the sth moment
coeflicient, say V7, is given by S,

V&%Z X3 (7.0
. N ¢

The moment coeﬂicient-s&f}; for group data should then be reduced to the
values ¥, about the miean by means of equations as follows:
Va, =\0
IV — (nye
OYs = Vi —3viv! + 2(ve
SO Ve Vi avivy 4 6(v)ev; — sy
2 iSﬁlculate the adjustments for Erouping crrors.
AThe assumption in gr ouped data is thai the observalions take the
(Faltie of the mid-point of the glags interval. This assumption can be

Q) 3 . - g
\/more nearly fulfilled if corrections for grouping, known as Sheppard ;
0 corrections are necessary in the first ab

corrections, arve applied. N

third moment, since the effects of grouping tend to balanee out. They
are made in the second ang fourth moments when the statistics are 8
ght of the curve tapers off gradually at botk

system of areas and the hei
tails. These corrections serve then to give a better cstimate of t.h’e
The sth moment coefficients, ,, with Sheppa.rds

(7.03)

paramaeter valueg,
corrections, are

1= V]
e = ¥y — T2 (h?) (h = length of interval) (7.06)
btz = V"‘
se=V

CT VY + (e



Cusr. VI NORMAL AND NORMALIZED DISTRIBUTIONS 151

3. Calculate 8, and Be.

2
PR (7.07)
Ha
If normal: VBL=10; 8= (7.08)

4. Test whether the obtained values of

from 0 and 3.

The exact sampling distributions of B
is normal have not been w
determined approximate empirical frequency cu
of the sampling distributions.
avatlable by which it can be det
much deviation may be expected from 0 and

errors alone.

It either one or both of the eriteria, 4/B; and g,
from the values for the normai curve, § and 3 respectiv

orked out, but E. 8§

ermined accordin

v/Bi and B, differ significantly

and g8, when the population
. Pearson (Ref. 18) has
rves from the moments
Tables giving values of +/3; and Bpare
g to size of sapiplé how
3 due to randogiysaimpling

cii'{fjer“,éigniﬁcantly
ely, the hypothesis

TABLE 39 )
I'nr CompuTaTioN OF THE Frrer Four MoxENTs FOF, ﬁbﬁ IN DeTBEMINING PRAR-
s0x’s CRITERIA OF Norydrnrry

x X - 144:) % N
1:;;’%21 7 T = '—“‘—10 - ) f.j.‘:x bEL Fut? Fxt
— o
1} {2) @ " (4) (5) (6) (7
B NS
220.5-239 .5 3 (M 27 243 2,187 | 19,683
219.5-220 5 14 a\ 8 112 806 7,168 | 57344
209.5-214.5 31 |OY 7 217 1,519 | 10,633 | 74,431
199.3-200.5 i 6 300 1,800 1 10,800 | 64,800
189.5-194 .5 &6 5 280 1,400 7,000 | 35,000
179 5-189.5 NG 4 312 1,248 4,992 | 19,988
169.5-179.5 k. (N5 3 225 675 2,025 6,075
15%.5-169 .5 § 81 2 162 324 648 1,206
149.5-159 51 81 1 81 81 &1 81
139, 5-1495" 81 0 0 0 0 0
129 5<139. 5 77 — 1 — 27 7w —- 77
119%-320 5 53 -2 — 106 212 | ~ 424 848
109.5¥119. 5 46 - 3 —188 414 | —1 248 3,726
M. 5-100.5 31 — 4 —194 406 | —1,984 7,936
89.5~ 99.5 22 -5 — 11D 550 [ —2,750 | 18750
9.5~ 895 19 — 8 —I14 634 1 —4104 | 24694
69.5- 79.5 15 -7 —105 735 | —5,145 | 36,015
59.5- 69.5 0 — 8 0 0 0 0
49.5- 59.5 4 - 9 — 38 824 [ —2916 | 926,244
30.5- 49.5 1 —10 — 10 100 | —1,000 | 10,000
29.5- 805 1 —11 — i1 121 | —71.881 | 14641
"Total N =810 — 885 | 11,899 | 24561 | 416,539
Zfz Zfz? Zfz? Zfxt
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that the sample could be a random sample from a normal population is
rejected. '

Problem VIL1, Testing the normality of a sample by Pearson’s
method. The fitting of the normal curve to a set of obscrvations is
carried out on a set of achievement-test scores of 819 students on a final
examination in & college course in general zoology. The arithmetical
labor is substantially reduced over that of following dirvectly the process
specified in Equation (7.04) by taking the origin near the center of the
distribution and procceding to work with the elass interval as Lhe unit.
This is done by ealeulating the moments about the origin of the cafaputa-
tion variable, . The corrections indicated in Fquation (7.06) ¢an then
be made, putting & = 1. The whole process is followed oyt recorded
in Table 39. A

We shall follow through the calculations in the ord®in which they
have been presented in the preceding theoretical distOssion. The mean
and standard deviation of the distribution are asddllows:

254 = 1.08059 N

4

T

X = 144.5 4- 10.8059 = 155.3059 v
fofe i p N\ b3 I

5o = (z—{"’- - 5;2) - (—-1;1853 - (},08059)2) ~ 29960297 _ 5 65514

819
sx = 36.5814

N

li

Step 1. Caloulate moments about the origin of the compufation
variable: 8

A
Vi = 1980586 . 11,899 -
| 1% y Vi= g5 = 11.52869
(V)2 =(IM676668
%, vy = 25561 o4 98901
(V3)= 1.26176386 3 819 — T
O = Lassaaase v = U599 - 508.5046
S.tgl:)';z Caleulate moments about z:

o X
V= Vi — (V])? = 14.52860 — 1.16767 — 13.36102
Vo=V, — 3ViV;, 4 2(V))s

= 20.98901 — 3(1.080586)(14.52869) + 2(1.26176386)

20.98901 — 47.098497 4 252352772 = — 14.585050
Vi — AVIVE + 6(V)2V; — 3(V))e
= 508.5946 — 4(1.080586)(29.98001) -+ 6(1.1676668)(14.52860)
— 3({1.36344459)

I

Vi
= 476.6694

Step 3. C'orrect the moments for grouping by Sheppard’s corrections
(for computation variable 2, we have b = iy



Crar, VII] NORMAL AND NORMALIZED DISTRIBUTIONS 153

m=Vi=0

e = Vg — fh% = 13.36102 — 08333 = 13.27769

gy = V3 = —14.585950

pe = Vy — §Vh? 4 Tioh? = 476.6694 — 8.68051 -+ 029167

= 470.01806
Step 4. Calculate 8; and 8: or a; and as:
~ M _ (—14.585050)>
o=l T ey~ 09088713
VB = e =2~ _ 5014 N
B
O\

We refer to the tables of 4/8: (Ref. 18) and find that thig deviation,
—-3014, or one groater than this from /g, = 0 or oy = for-the normal
curve, is to be expected less than once in 100 trials by radddm sampling
from a normal distribution or population. Thus, thuisll‘sbribution under
consideration deviates significantly from a normaeV distribution with
respect to /8. AN

_uy 470.01806 _\26 66

S |

Pr =0 = GEorroopa

We refer to the tables of 8; (Ref. v1'?‘3%3:fmd find that the ohserved value
of 82 or one less than this value g 80 be expected less than 5 times in
100 trials but more than 1 time 100 trials in random gampling from a
normal population. Thus, thé\present distribution deviates significantly
at the 5 per cent level fropd @ normal population with respect to 3.

Fitting the Normal Curve to a Set of Observations by the Use of
Cumulants. In 1928/ . A. Fisher developed a new kind of symmetric
function, the k-statiStics, which possess the valuable property of giving
particularly simp’ié"samp]ing formulas, obtainable divectly by combina-
torial method§, and removing most of the algebraic labor characteristic
of the oldeymethods. The k-statistics, k,(p = 1,2, - - -), are symmetric
in the glgée'}'va-tions, Xy . . ., X., 80 that the mean value of k, is the
pthenmulant, or F(k,) = «,.

ﬁﬁsfler’s eriteria to test for the departure from normality of an
observed sample, known as the statistics g1 and ga, are calculated from the
k-statistics, ku, ke, ks, and ks, which are in turn derived from the sums of
powers, from the second through the fourth, of the deviations from the
mean. The quantity g, is essentially a measure of asymmetry or skew-
ness.  The parameter ¥ of which g1 is an estimate is related to 4- /B,
of Pearson’s notation as follows:

K

tAVBi=n=5=2 (7.09)

e Kg
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The quantity g is a measure of the peakedness or flatness of the curve,
that is, its kurtosis. The parameter ve of which g is an estimate is -
related to Pearson’s Sz in the following way:

yo=p—3="_3=5 (7.10)

I Kz
A convenicnt way of caleulating the A-statistics is to get first a series
of values V1, Vs, Vs, Vs, defined as follows:

zX
Vi=+ ~
2
V2= Ei{ - X Oy
EJXa _ ~ N * (711)
Vs =—.r-' — 3XV, — X? ”.'} o
4 ~ _ "\ ’
V4 = % - 4XV3 - 6X2V2 —“‘X*'
"The f-statistics are then given by N
JIﬂl = V!. ’\ & -1
. _ NV, PN\%
by = N1 \ O
Fy = N*Vs SN (7.12)

D -7 IV

PO o V R -

N-DHWN-F-3) ' W -—2(v -3) ]

If the sums of p \scérs: are calculated from group data, Sheppard’s
corrections for grouping may be applicd as follows:

3Nt .

NOB =k~ B =k~ 1do
However, ’ghe'g?} corrections should be used for purposes of estimation, not
for testingsignificance.
'l']:}gjsha,tistics g1 and g; are given by

O ks
g = -;z—; (7.14)
2

For samples from a normal population, g1 g distributed normally
about 0 with a sampling variance
@ = BN(N — 1)
A T S Ry
Similarly, g: is distributed normally about 0 with a sampling variance
@ o= 24N(I\L— 1)z
S W - W -2+ N T 5)

(7.15)

(7.16)
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Unless the divergence is marked, large samples are required to deteet
departure from normality, because the exact sampling distributions
of the criteria are not known.,

Problem VIL2. Testing the normality of a sample by TFisher's
method. An example of the method of testing normality by means of
the g-eriteria is given by applying it to a sam ple of the honor-peint ratios
(ILP.R.) of 302 freshmen in the University of Minnesots College of
Agriculture. The caleulations are set out in Table 40,

We find that ¢, = < = 166 and ty = 92— 197, Entering

T8, Bk, j
the normal table or the f-table with degrees of freedom = ®, We find
that the respective probabilitics are .87 and < .05. Thereforg(tve may
conclude that the hypothesis of normality is rejected at the-5 per cent
level, g o

Special Treatment of Data to Secure Normal Distdibutions. Two
alternatives are open to the research worker if he ﬁngif;’t-ha.t- his data do
not conform to a certain model about which considerable is known and
by the use of which the analysis is relatively easy %0 work out. He may
develop a new model to which his data may ¢ ‘£(}rm, or he may transform
his data to make them fit one of the cahyentional models. The first
alternative is often a problem of considerbble mathematical difficulty.
Hence the second procedure is usuallyfollowed.

In particular, the large part of statistical theory is built on the assump-
tions that the observations are disfributed normally and that the variance
i3 constant. Tt is often impottant, therefore, for the research worker to
show thai his measureme;n‘ts\a.re distributed normally or to transform
them into a form that K \normally distributed, or at least into a form
that has the best possible chance of being so distributed. In some cages
the normal probabiﬁtﬁ curve gives a very close approximation to the
observed facts. sAlfhough this is not often the ecase, it is usually possible
to transform ghe” original obgervations into some function of them so
that the fll'l;%(;n will be distributed normally. In this way the processes
in subsequ®nt caleulations become simplified and the results more com-
proheniye in application. For instance, if the mean and standard
deviation of the normal distribution are known, the distribution is known
exactly. If any obtained disiribution of observations is established as
normal, then the known properties of the normal model may be applied
to it. 'Tests of significance become more valid and sensitive when the
sampling distribution is normalized in case of original skewness.

The linear seale seems to be used in taking observations almost auto-
matically, as if it were the one unique scale used in nature. This scale
may often be the most convenicnt way of representing the original
obscrvations, hut it need not be for that reason the only way. Should
Ieasurements made in one way follow the normal law, other methods

el
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would not be likely to lcad to a similar distribution. )or example,
measurements of the volume of an ohjeet might be found to follow a
normal distribution whereas measurements of the diameter would not,
Iere the measurement of the volume would be the more convenient to
deal with. Since the method of measurement giving a normal distribu-
tion, if it exists, is not known a priori, it is not likely that the appropriate
method will be selected to begin with.,

The second condition that is often indicated or implied as a necessary
condition for the unfettered use of statistics is the stability or at least the
predictability of the variance. Methods of meusurement or ofslrans-
formations giving normal distributions are of special significanes when
the standard deviation is large in comparison with the meaat In cases
where the standard deviation is small, the effect of any {ransformation
is less and, when it is very small, negligible.  Bothy )\ hioeessary and
sufficient condition for the independence of the sin’ and standard
deviation in samples is normality in the parcot digtMbution.

We now consider the nature and use ofoNarious Lrnsformations
designed to normalize or stabilize variates s0)d¥ to render their distribu-
tions more amenable to treatment by stasitital methods based on these
conditions. AV

T-8core. In the ficld of educational psychology, MeCall (Ref. 16)
converted the raw scores on 5 ment-}il test of an unselected group of twelve-
year-old children to T-scores,\ This transformation gives a normal
distribution of P-scores. The Process is illustrated in the tranzformation
of the raw scoves of 141 fréshmen on a science test (Table 41).

In columns (1) and (2) the raw-score frequency distribution is given,
Column (3) gives the tumulative frequency up to the mid-point of the
respective raw-seopdanits ; for example, inrow I, N = 133 + 2(8) = 137.
In column (4)¢the cumulative percentages arc listed; for example, in
row 1, 137/N="137/141 = 97.13,

The vatues recorded in column {(5) were obtained from the table of
areas and dbscissas of the normal curve (Table I, Appendix). Thus, in
TOW, ]\’"i',}fe abscissa value of & point, such that 97.13 per cent of the total
arcginder the normal curve lies below the ordinate erccted at that point,
is'found from the table to be 1.99.

'I_'he T-score values in column (6) are obtained by multiplying each
abscissa value by 10 and adding 50 to the product. Thus, in row 1,
10(1.90) + 50 = 60,

The 7-score unit is defined as one-tenth of the standard deviation.
'TI;% mean of the distribution of T-scares is 50 and the standard deviation
is 10.

. It is to be noted that measurements of the mental qualities of indi-
viduals may be made 80 that their distribution will be normal within the
Limits of sampling error. This result can be obtained for a large unse-
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_ TARLYE 41
TraNsFORMATION oF Raw Scorms ov J OTNEON BCIENCE APrLicamion TEsT or 141
FrEsuvar Bruvests o T-Sconzs

Scores lower + 3
those at given score Values of abscissa
Raw score f in standard T-acore
Ineasures
N Per Cent,
(1) (2) (3 (4) {5) (6),
\
50 8 137.0 97.13 1.90 ¢ \Bg
49 8 129.0 91.46 1.37 NS B
48 7 121.5 86.14 1.09 o 61
47 8 114.0 80 .82 0.87 ™% 59
46 8 106.0 75.15 0.88) 57
"\
45 7 98.5 69.83 9,52 55
44 6 92.0 65.23 \D.39 54
43 ] 86.5 61.32 /N 0.29 53
42 7 80.5 57.07 ('L 018 52
41 6 74.0 52.47 NN 0.06 51
40 6 65.0 48 21 ™ —0.04 50
39 5 62.5 44,39 —0.14 43
38 9 55.5 ~3h35 -0.27 47
87 7 47.5  [+333.68 —0.48 46
36 7 40.5 b 28,71 —0.58 44
35 7 335\ 23.75 —0.71 43
34 7 ¢ 2\00 18.79 —0.89 41
33 5 *20.5 14,53 ~1.08 39
32 5 N 155 10.99 —1.28 38
31 6 O 1000 7.09 —1.47 a5
30 4 0N 5.0 3.56 -1.81 32
29 N 1.5 1.06 —2.30 27
"’\s.
O

lected hom‘cj,;g}?leous group of individuals usually by constructing a test
or examiftation comprised of some very easy items, some very difficult
item{,"“a;n(l many items of average or intermediate difficulty. Of eourse,
a test™an be constructed to conform within limits to whatever shape of
distribution is wanted by varying the difficulty of the test, the time
allotment for adminisiering the test, the system of weighting the scoring
of items, the choice of the unit of measurcment, and so forth. Further-
Inore, even if the cxaminations yield results that are normal for a homo-
geneous population, the same examination administered to a special
group will likely give scores that are skewed, often as a consequence of
selection. or of the inappropriateness of the examination to the group
tested. Whether a normal or some other type of distribution results
from the measurements used, it is obvious that whatever knowledge is
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gained about the distribution, it concerns the distribution of the function
of the trait used in the measuring process. This conclusion is valid
because the measurement is indirect, that is, through the measurement
of a functional relationship, the exact nature of which is unknown.,  Qur
measurements are only the manifestation of the underlying trait.  The
statement that the mental traits of man are or are not normally dis-
tributed is unproved and unprovable. No amount of experimentation,
for instance, could demonstrate that intelligence is normally distributed.
Qur knowledge of its distribution relates to the way in which the mathe-
matical funetion we use in measuring intelligence is distributegh,  The
frequency distribution of Binet 1.Q)s, for example, fur a lyrge homo-
geneous population is generally held to be normally distritaftod. How-
ever, cven here the extreme lower end of the distribution ©81.Q."s is not
normal, since there is an excess of individuals with low :I~:Q."s {sce Ref. 19,
page 102).  Thus he who makes a test proccoeds by [wShdssuming that the
trait is normally distributed and then by derivigg measurements which
will conform to this model. When the raw scofed for a particular sample
are found to be skew, one means of normalizitig them is to convert them
to T-scores. S

Only when a trait is measurable djrt}cﬁly can the truc nature of the
distribution of the trait become kngwan.  Certain biometrical measure-
ments made on random samplingfsi’frbm homogeneous populations may
be normal. Wechsler (Ref. 21,):~§0Hect-ed available data for 89 measured
traits and abilities of human béings. Certain linoar measurements, such
as stature, length of extrefitities, the various diameters of the skull, and
certain of their ratios likethe cephalic index, were the only distributions
which might be reg;ekied as normal, although cven amoﬁg these there
was often considerable asymmetry. '

The Use ofNProbits in Testing the Normality of Transformations.
The best metH@d of transformation to seeure normalization must usually
be detcrps{ned by trial and crror, The suecess of any particular method
ean k')g @eﬁ-‘ermined by the application of the standayd staiistical methods
pre}{q?tisly daoseribed. However, a simple graphical method is available
,}Vh{@h can be used to find out which transformations are successful and
mv'what respects other transformations are not. The method was
deve_lopcd for dealing with toxicological and other dosage-mortality data,
particularly by Gaddum (Ref. 14) and Bliss (Refs. 3 and 4). Their
method, that of probits, is first presented In its use for testing the normal-
ity of transformations,

The probit is defined in terms of the normal equivalent deviation
(N..E.D.), and is readily determined for any given percentage from the
unit normal curve. The N.E.D, of a given percentage is the deviation
{from the mean) equivalent to the given percentage of the area of the
curve. In order to make all valyes Ppositive, the probit is the value result-
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ing from adding 5 to the normal equivalent devistion.! The probit
values corresponding to given percentages can be read directly from
Fisher and Yates's Table IX (Ref. 13). The graphical method econsists
in plotting the appropriate transformations of the observations as
abscissas either on probability paper or against the corresponding probits
as ordinates. If the individuals or experimental subjects vary in such
a way that the measurements or transformed measurements of the experi-
mental factor are normally distributed, the probit should be a linear
function of the measurement or of its transformation. It is usnally
immediately apparent whether or not the plotted points are rands mly
distributed about a straight line. When they are so distributed, ons can
with practice draw a straight line among the points to fif satigfactorily
for most practical purposes. \J
1t is possible to fit regression lines, and maximum lil{elihoé'd estimates
of the population parameter values of the mean and sta;ldé,l'd deviation
can be obtained when more precise methods are needéd®™ A straight-line
probit graph fitted by eve provides the first appreximation. Although
graphical analysis is probably the most efficient micthod for selecting a
suitable funetion, sometimes it is necessary to'détermine by computation
whether a given transformation is effectivglor, alternatively, whether the
departures from another mode of plqt%iﬁg deviate significantly from
normality. The standard statisticaldgsts for this purposc, the statistics
g1 and gs, have been discussed pre¥iously. The first, g5, measures the
skowness of the presumed normal*distribution and determines whether
or not the chief trend of thedpeints is truly linear; ¢» indicates whether
the secondary trends and ‘t'“\-‘ist-s about the straight line ave statistically
significant. With a sm‘a.D*fiumber of observations, only large departures
from a straight line Wil be statistically significant. This conclusion will
have been recogizéd as obvious during graphic analysis, so that the
eomputation may” then be seldom worth doing. Howover, when a
number is S@’cﬁent for making grouping advisable (say 50 or more), the
calculationgléading to the testing of the agreement between observations
and hyl{éﬁhesis may lead to results that are not apparent from inspection.
/Flie principal use of the graphical method just described is limited
in ibe/application to data to the percentages corresponding to the values
of the variable. However, the graphical method is at times useful cven
when more complete information is available (Ref. 14). Fpr example, if
there are N observations of a given variable, one method is to rank ithem
according to size. Then the smallest ohscrvation Is assigned a percentage

. 300 500
of é—?\? and to succeeding observations, percentages of N aN’
%%M These percentages are then changed to probits and each

_
1C

ompare with the T-score, page 158,
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individual observation is plotted. When the data become sufficient,
they are grouped and added cumulatively and the probits ave then
plotted against the points separating the groups. When the number of
cascs in a group is very small, it is preferable to plot the individual read-
ings or to assume an even distribution of the obscrvations over the range
covercd by the group.

Again, if straight lines fit the data, the distributions are normal.  The
mean and standard deviation can be estimated fairly aceurately from
the graph. The reciprocal of the slope of the line gives the eslimate
of the standard deviation. The mean is the value of the abscissa for
which the probit value (as ordinate) is 5. The customary techiine for
calculating a regression line ig not appropriate when the afperimental
results are of the kind just deseribed. The best estimutesoFthe mean
and standard deviation are obtained by using the oxdifiary methods
directly on the transformed observations.  When theafiginal ohservations
are grouped, the moest convenient method may(be’ to estimate these
statistics from the moments of the distribution,\\/

The method of probits also provides a '$peral graphical method of
normalizing distributions which may be applied when the scale on which
the experimental results are measu;ed:is allogether arbitrary. If a
smooth curve is drawn through the points of a random sample of obzerva-
tions plotted against probits, the elive may be used to convert succesd-
ing observations to & scale qfa'f)ir()bits. These transformed valucs are
necessarily normally distributed. The validity of this procedure requires
that the shape of the ariginal curve and the variance of the transformed
curve must be stable. , (An! illustration of the application of this principle
is given by Ferguson, (Ref. 10) in his presentation of methods for the
estimation of the {imen and precision of geparate items of a mental test.
Finney (Ref. '1‘1}) applied the method of probit analysis to gel the max-
imum likeliigod estimates of the two parameters from the data of

Ferguso%w

i'ih;}' Logarithmic Trensformation. It has been found that many
meerate]y skew frequency distributions arising from empirical data or
fulfilling certain theoretical conditions are reduced o normal curves when
tHe original observations are transformed to X = log X. A logarithmic
transformation of a variable may not only make the distribution more
.nearly normal but will often stabilize the standard deviation, that is, make
it more or less independent of the original variable. This stabilizing
tendency holds where it is found that the standard deviation of the
original variable is roughly proportional to the mean, or where the varl-
ance ig proportional to the square of the mean. This fact makes the
logarithmic transformation a powerful one. It has also been found

?IS{Ef;JI )in dealing with new material whose distribution is unknown
ef, 6).



Crar. VI  NORMAL AND NORMALIZED DISTRIBUTIONS 163

There 13 also the theorctical justification which indicates that the
log transformation for most scientific observations is probably preferable
to employing no transformation st all. The normal law may predict
negative observations. The fact that there are men of more than doublo
the average weight implies the existence of other men with negative
weight., In case of seores of enlisted men on the Army Alpha Intelligence
Examination, the measures M — 2 8.D, and & — 3 8.1. give the non-
existent scores of —12 and —49. When logarithmic transformations
of the observations are used, this difficulty docs not cecur. Mensure-
ments of the size of small bodies of the same shape may be based on the
diameter or on the volume. If the distribution of the volumes is noxpyal,
that of the diameters will necessarily be skew, and vice versa. \Again,
the usc of logarithms does away with the difficulty, If the lgéﬁthms
of the diameters are distributed in s normal manner with ‘a/standard
deviation A, the logarithms of the volumes will be normdlly, distributed
with standard deviation 3\ (Ref. 14). O

The logarithmic transformation, then, should mal«f‘a\easy the interpre-

tation of experimental results when the variatishe are large. It fre-
quently has a double advantage in making e¥ptrimental results more
consistent and in preventing excessive weigl?t“from being given to an
occasionally large aberrant obscrvation{\ochran (Ref. 6) indicated
that the logarithmic transformation mafle no significant difference when
the coeflicient of variation was less thﬁ},l 12 per cent. Natural logarithms,
preferred by the mathematician,‘aﬁﬂ'common logarithms to the base 10,
ordinarily liked Letter by the experimenter, give equally good results.
Gaddum (Ref. 14) uses the. symbol X to denote the standard deviation
of the logarithm to theyliase 10. It is worth noting that as a logical
consequence of the adgption of the method of logarithmic transformation,
the mean of the loggrithms (or the geometric mean of the observations,
instead of the al‘,@iﬁm&tic mean) would be regarded as the most probable
value, &
Gaddum\Y\Réf. 14} gives general formulas for obtaining the mean and
standard (@éviation of the transformed distribution when the original
Obse£yaﬁ6ﬁs have been grouped on an arithmetic seale. Thesc are

N N X

X = Ing —9—2_{ (717)
(%)
2
A = 0.4343 logo (1 + %2), (7.18)

where X and ¢ are the mean and standard deviation, respectively, of the
original distribution. Gaddum points out that these estimates are
reasonably efficicnt only when X is less than 0.14 (Ref. 14), when an
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estimate of A within 3 per cent can be obtained by dividing the coeflicient
of variation by 231.

Gaddum proposed to call the distribution of « “log-normal ” when the
distribution of log  is normal. He reports & number of studies which
show that the log-normal distributions have been found in many fields of
work. It is also indieated that its use could have facilitated interprety-
tion of data in certain studies in which difficulties were encountered.  In
Wechsler'’s study (Ref. 21), for instance, the curves obtained for many
of the measurements of human traits were just the kind which are
improved by using the logarithmic transformation. Gaddum calenlated
the values of A for some of Wechsler's data, For example, the wstimated
N's for weight—0.045 and 0.055—are about threc times theNor height
—0.015, 0.0164, 0.0172, 0.017. O

Mubsam (Ref. 17) proposes the usc of a “log-arithA@mdd for the study
of relative dispersions of distributions. The log-arith, grid s o system of
rectangular ecordinates in which the axis of a,b%e:i'ssas g divided log-
arithmically and that of the ordinates ariththdtically. Generally, dis-
tribution curves showing equal broadness ona/log-arith grid have equal
relative dispersions. A broader curve indicdtes higher velative dixpersion
while a narrower curve shows g lowerpohe.  This form of graphic repre-
sentation is particularly suitahle in $he“case of log-normal distributions.

The Square Root and Inverse™Sine Transformations. The prosent
extensive use of the analysis of variance attaches speeial significance to
the uscfulness of transf ormations when there is reason to suspectl that the
theoretical conditions forsthe application of thig technique are not ful-
filled. These theoretielconditions are that the experimental errors to
which the experimental data are subject sro normally and independently
distributed with_ghe same variance. The logarithmic transformation
just discussed equulizes the variance when 1t is proportional to the square
of the.mear}.. NTherefore, this transformation is powerful for dealing with
quant-ltaggéﬁ}neastlrements, and 1t is used as a preparatory step to an

variance when dealing with certain types of nennormal data.

‘straé]ﬁard deviation, as caleulatod from g residual sum of gquares, shall
beapplicable to the various “freatment” means, even though the means
are different. The lack of normality of the distribution of the residual
errors as observed in practice may be of secondary importance, Curtiss
(Ref, 9) indicates that the logarithmic transformation may possibly be
more suc:c-essfu] in Stabilizing the varianoe than in normealizing the data.
ressing results of experimental or other

ave a speeilied quality,  Research work-
: d the problem of including in the experi-
ment-&lt-l designs for collecting thig type of data an objective estimate of the
experimental errors to which the data are subject. The analysis of
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variance, uniquely fitted to serve this purpose, was not originally planned
for use with percentages. The problem was one of discovering a trans-
formation for the original observations which would satisfy the condition
of normality of experimental errors required in the anslysis of variance.
The transformation used for thiz purpose is known as the inverse sine
function, sin ! /.

The inverse sine transformation applies to fractions or percentages
derived from the ratio of two small integers, when the experimental
errors follow the binomial frequeney distribution.  Refore an analysis of
variance is performed, each percentage is changed to an angle 8 so that
p = sin? 8, As the fraction p varies from 0 to 1 or the observed™per-
centage, P, from 0 {0 100, the angle # changes from 0 to 90 deg. JJnMarge
samples, the sampling variation of P* tends to be normally,giikt?ibuted
with a variance dependent only on the number of observations on which
the percentage is determined. The variance on the new ‘seale is 821/n.
Fisher and Vates, in Tables XIT and XIII of Ref. 13;pfovide tables for
converting percentages and fractions to degrees. «N)°

Tor the sumpling distribution of the estimatéd percentages or pro-
portions to be normal, the population value’\?f’ p would be 50. For
values of the parameters departing widely frq\ﬁ .80, as between 0 and .25
and between .75 and 1.00, the sampling)distribution would be highly
skew. For determining measures of '5gzr'np]ing crrors of such distributions,
it is necessary to make a transformatipn of the observational values. The
inverse sine transformation is thene used here,

Likcwise, for comparing sthe differences between percentages, par-
ticularly where they deviate widely, as when one is in the tail and the
other near the center ofthe distribution, the inverse sine transformation
will render them moréneuarly comparable. Thus, the difference between
two percentages P{and Py would become

K7, Al o P [P
\;:.; d =100 (sm \];m gin ’100)

Ei.ﬂd "2‘.\ gq = 8_21.. 8_2_]'
A\ )y AW TN

wheré N and N are the sizes of the samples. Then X = d/o,is referred
to the normal scale.

Zubin (Ref. 22) has provided nomographs for the test of significance
between two percentages transformed to the inverse sine function scale.

When the observational data consist of small integers whose cxperi-
mental errors follow the Poisson law, the squareroot transformation,
y = /z, is used. This transformation i3 equivalent to the angular
transformation at each end of the percentage scale, that is, from 0 to 20
per cent and from 80 to 100 per cent. For a Poisson distribution with
mean m, the standard error is the square root of m. Henee, if the treat-
ments in an experiment bring about differences in the values of p and m,
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they have different variances. With small whole numbers, treatment
differences must be large before they can be significant. Moreover, the
larger the treatment differences are, the greater the inequaliiy in their
variances is likely to he.

The Poisson distribution is skew and hence there is a known relation
between the standard error and the mean. The theoreticul viriunce of
the transformed values, \/5:_’9,, is +.  The purpose of the transformation
is to change the duta t0 a new scale in which the experimental variance
is approximately the sume for all plots, thus making possible the uge of all
In estimating the standard error of any treatment comparison, &N\

Normalizing Transformation Jor Ordinel or Ranked Datu, > In some
types of experimental data, it may be possible or suflicient, 60ty to place a
series of magnitudes in order of preference without knowledge of their
metrical values. For example, in tests of psyeholoZical preferences,
individuals may be able to express preferences bufy dhnot, HESIZN NUMEr-
ical values to whatever forees may be operativdin bringing ahout such
preferences. Likewise, in the st-andardiza{icm of food products, an
important factor i the determination of Qonsumer preferences, which
may be indicated by the ranking of g.given set of products in order of
choice. )

Where the assumptions underlying the order of ranking are fulfilled,
Damf‘iy, the assumptions that j;hé.’linderlying trait may be regarded as
continuous and normally distributed, the transformation of ordinal data
t0 aform that is amenable tofurther analysis (for in stance, to the analysis
?f varlance) sometimes. may be definitely advantageous. The trans-
iorma-t_ion‘ needed is %e"“}hich normalizes the data and can be obtained
by assigning to eagh Item in a series of given size a score equal to the
expected value foran observation of corresponding rank in a normal
population With \7eT0 mean and unit standard deviation. Tables have
b_een prepa%lzg‘:d‘for series of all gizeg from 2 to 50 items, Such a table is
given by Risher &L.nd Yates's Table XX (Ref. 13). Table XXT in the
Sargfns?.ﬂf:; p;‘owdes th_‘? sum of 8quares for the transformed score of
eachimndividua ,‘substantla-_lly reducing the lahor involved in running the
3@;13'513‘01“. variance. This type of analysis makes possible fests of

Merentiation in preforence between clagses of subjects of different scx,

age, or other characteristics,
forming raniy oni o et esiiption of tho echmique for rsss-
: Pplication to & problem of testing consumer

preferences.  Sandon (Ref. 19) hae prepared a nomograph for the scoring
of rank data on scheol examinations,

Prosrems

1 t‘)S];zt l?p a list of statistical tooly that depend for their efficieney upon
e ulﬁllment of the conditions of normality of the measurements of
the trait or characteristic in the population sampled
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2. What are the effects of nonnormality on the validily of tests of signifi-
cance—the z or ¥ test, the two-tailed t-test, the one-tailed f-tost?

3. Test the hypothesis of normality of the following distribution of scores
on the factual information test of the 1947 Minnesota State Board
Examination in Biology administered in a representative sampling of
56 Minnesota high schools {Anderson, 1849). Use the method of
Pearson,

Score  Frequency Score  Freguency

25 1 12 173

24 3 11 159

23 24 10 129 ~
29 26 9 109 \
21 73 8 49 A o
20 90 7 28 (\AH
19 122 6 18 NS ©
18 179 5 o >

17 206 4 64

16 227 3 K5

15 255 2 u,\I'

14 218 1 \V

13 240 To@l 2348

4, Test the hypothesis of normality of thQ ~follomng distribution of
ﬁl::t~t11mrter honor-point ratios of & fahdom sample of 122 students
in the College of Agriculture of the Wniversity of Minnesota. Use
the eriteria of Fisher, N

.'v

OPES Frequency
2.76 t6° 3.00 1
250t 2.75 2
gﬁto 250 9
Lio 2.25 3
\\1 7610 2.00 5
1.5 t0 1.75 8
;7 12t 1.50 13
O\ 1.0140 1.25 14
22 0.76t0 1.00 11
O 0.51t0 0.75 14
§ 0.26t0  0.30 14
o\ 000t 0.25 11
N —-0.25t0  0.00 9
m~\J —0.49t0 —0.25 3
V —0.74to —0.50 2
—.8% t0 —0. 75 1
—1.25to —1.00 2
" Total 122

5. Use the graphical method involving the use of probits for testing the
normality of the distribution of honor-point ratios in Problem 4.
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CIIAPTER VIII

STATISTICAL ANALYSIS OF DATA UNDER NONNORMAL
ASSUMPTIONS

A type of data met with at times, particularly in psychology, consists
of rankings which may arise from material not capable of quantitative
measurement on & variate scale but arranged in order according te'some
qualitative characteristic. This might be, for example, thegbrdblem of
arranging musical compositions in the order of prefelence by & group of
studenis. Another problem consists in ranking ace ordmg to two vari-
ables: the arrangement of a set of musical compositiOns in the order of
preference by a group of professional musicians andhby a group of lay-
men.  The relationship betwoeen the two sets of mnkmﬂa i3 of interest.
Ancther type of data in this field would be psdduced by having a judge
rale individuals on a five-point scale acegrdifiz to some trait. Trans-
formations of thesc types of data are sopdetitnes made. TFor example, the
ranked data may be transformed jntd” normally distributed data as
described in Chapter VII. In ano‘sﬁel method the ranked data are
distribuled into groups, so thaf\ the frequencies in the various groups
follow the normal scale. Segres*on a linear scale are then assigned to the
groups, Iurther statlstma{trcatment usually follows, such as computing
the product-moment {{relatlon coeflicient, using mu]tn ariate analysis
or factor analysis,

Before dcciding ﬁp make such transformations, the eritical investigator
will examine his¢flgta and the conditions under which they were collected,
to detelmlne “\h(‘th(}l the assuroptions underlying the tmanormatlon
can be IeAE}QImJny accepted. e may find that they cannot he and hence
decide thiat s transformation is not warranted. There are a number of
%lmple{“ h%amtlcal methods available which do not require the assump-
tmm ¢f the more claborate methods suggested above. They enable a
dirébt attack to be made on the data. Some of these methods will now
be pointed out, particularly those whose usefulness has been enhanced
by the development of means for testing their significance.

The Method of Rank Correlation. The rank-correlation method ag
developed by Spearman is well known. It is recommended, however,
that the principal use prescribed for it in elementary texts on statistics
be abandoned, 'This use consists in assuming that the Spearman’s rho
may be used as a substitute for the product-moment eorrclation cocfficient
by the aid of tables usually given to obtain the product-moment equiv-

alent. The formula due to K. Pearson (r = 2 sin 6 ) gives the relation-
169
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ship between the product-moment coefliclent, r, and the rank correlation,
p, when the variates are normal. The assumptions underlying the
equivalence, that there are no ties in rank and that the intervals belween
suceessive ranks are equal, are not likely often to be found in prictice,
The use of the rank correlation given here is that as & best of significance.

The Rank Correlation as a Test of Significance. Recent. contributions
to our knowledge of the rank correlation enable us to use it cifectively
as a test of the existence of correlation, that is, to test (he hypothesis
that the qualities under consideration are independent, or rather, that the
judgments of them are independent (Ref. 4).  Under such condigtens, the
pairs of rankings of » members drawn at random are independenty” Thus,
for large numbers of samples, every ranking of one quality will occur in
equal frequencies with every ranking of another quality, \Jf one ranking
is fized in the order (1, 2, .. ., n}, it may be corgafel with the n!
possible permutations of these members. Thus, \«i:.lic exitel, probability
‘that any correlation result could be due to randGhy sampling crrors can
be calculated. \

This method of the calculation of pmbabiﬁ%? values becomes laborious
and practically prohibitive when n i:-;‘o\f\ any substantial size. Olds
{Ref. 10), however, has provided tatdes¥which give probubility values
to a close approximation. He tabled, the probability values hased upon
the distributions of =(d%). Thedatter is simply related to +', the rank
correlation, by the equation N
~ : L 62(d?)

A

RA P (8.01)

The rank correlafion is of special value in testing significance when
there is no knowled@e of the form of the bivariate distribution or in the
case where the forti of the distribution 18, or Is believed to be, non-normal.
Tt should be pointed out that scarcely anything is known about the sig-
nificance,of Tank correlation in correlated populations.

Probfem VIII.1. Testing the significance of rank correlation. An
example Is presented to illustrate the test of significance of & ranlk corre-
lation coefficient by means of Olds’s Tables.

The r‘anks E1and R, were assigned to 12 individuals with respect t0
two qualities with the results shown in the table at the top of page 171

We enter Table V (Ref. 10, page 148) with < L2 and 2d? = 94; we
find the probability of not exceeding 94 by chance is between .02 and .01
Therefore, we may conclude that there is a correlation between the two
rankings,

_ Problem VIL2. Combination of the information from two tests of
mgmﬁcsfmce. Another use to0 which the rank difference correlation may
bel put 15 the combination of rank and contingency methods suitable for
utilizing simultancously two kinds of information contained in group
data. Table 42, concerning first-year students entering one of the
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Individual B, By d d*
A 1 1 0 0
B 2 7 3 25
C 2 i 4 16
D 4 2 -2 4
K 5 4 —~1 1
F ] 9 3 9
G 7 3 -4 16
a & 7 —4 1 .
I 9 5 =4 16 N
J 10 12 2 4 )
K 11 10 ~1 1 .Y
L 12 1 -1 1 AN
T'otals 0 04 W

colloges of the University of Minnesota, gives the Xuniber of those who
offercd two credits in high-school mathematics andthose who presented
maore than {wo credits in mathematics at the VEBI:I\GIIS levels of rating on the
College Aptitude Test (C.A.T.). ,\

v

TABLE 42
Fresmvan STupeENrs CLABSIFIED ALCORDLI:\G T0 COLLEGT APTITUDE RATING AND THE
NuMEBER 0F ENTRANCE C‘m:m-rq v Higu-Sczoon MatarRMarics

A College aptitude pereentile rating
Tnits of high-school | g:"} Total
mathematics \\ "
\ 1-25 26-50 51-75 | 76-100
n ’A
(8) Tyo years. .. pond. .. ...... 67 103 176 127 475
{b) More than tv\o FCArS......... 27 25 29 20 111
Propmtwn %ﬂ“ By 719 .805 819 .864 812
$l
Rank on AT ... 1 2 3 4
Rﬂllk\af'}he proportion. ... . ... . 2 3 4 = +1
\\ 3} |

Two tests of signilicance, independent of each other, are applied to
the data: the chi-square test, x% and the rank-correlation coeflicient, .
The chi-square test of the independence of the prineiples of classifica-
tion gives the following results: x* = 8.118, P = .046. The rank-differ-
ence correlation, ?"' between the two series, C.A.T. as one variable and

the proportion + 7, 88 the other variable, gives ' = 1, P = ,042.

To test whether the aggregate of these two tests is blgmﬁcant wo have
the following data:
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P — log, P Degrees of freedom
046 3.0791 2
.042 3.1701 2
Total 6.2492 4

X* = 2(6.2482) = 12.4984; ~ 01 < P <« 02, The probability of the
hypothesis of independence of college aptitudo rating and the number of
units of high-sehoe! mathematies taken {(two or more than twa) is approxi-
mately .014, by interpolation. Interpolation in the x®table ford\d.f.;

P x? Ing P ) W\.}
02 11.668 230103 O
014 12.498 2.14600
01 13.277 2.00000/%

.\ g

Problem VII.3. Analysis of variation by \the method of ranks,
Fricdman (Ref. 1) hag developed the method ef ¥anks which was designed
to study variation by using ranked data '\n’&teetd of the original quanti-

TABLEGY
lanssop PrreENTAGES OF CoLLege ATTENDAT\"CE FOR BPRCTFIED LEVELS OF (OLLEGE

APTITUDE ANp Op Sottorcovoac SraTus

Ranks bgge}l On percentage of college attendanne by
- sociocconomie status

Colloge
aptitidn & —
tnlervaly o

) |
I!elﬂv\l‘a’ 15-18 ‘ 19-22 / 23-26

——

27-30 [| Abaowve 30

T

&
1]

Lo W ot S ey

NN g b !
”f‘\l\} S of T.'Illk:\-l.,:. ms .534—..5 ™3
Naf A ik L5063,y g
e Divintion .y ga | 0 813

Al Ievintinn

suared 5 g g4ngg0l 0660950
r

[ B3 00 b @t me 82 b g
G B Y o Lo

.0
1

‘....._.n—-»——tan—lr-ll—i

]
(=

|
@ Sler

H)

=]

0.250) |—

(%]
c
&
o
hedl
O e B2
oo bl
& &
LI RS
=l
o=
1 e
o
Tk

Bt

0,659344! 0.316968, 0.0623| 5.640625

Lo 1 i I

= 9.783378.

Fhiroretien) menn = 335

Sum of deviation Bquared

Bative vajips, avoiding the assumption of normality in the original data.

Iy 4l be used whorpe the available data relate to order
VY OT Lo a guslitative thargeter ¢apable only of being ranked. ‘Thix

The nethy an
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method makes use of the statistic X3, which is related to Keneall's coefii
cient of concordance W (see page 174) as follows:

xi=mn ~ LW N2,

‘The distribution of x2 tends to approack the distribagted ¥ioas n tends o
infinity, witht {n — 1} degrees of freedom.  Some stgnihienner fovels of
v luve been provided (Ref. 1),

The example given in Table 43 shows (he procedure of the nuethod of
rank=, The data are given by Schultz (Ref. 13). £\

{1) The ranks were obtained by arranging in asernding ordérhe
pereertages of male high-school graduates for euch rm\ Tthe

eollege aptitude levels), A\
(2) The next step was to obtain the mean runk fund AL u]. culumn
;.,1\ en in line (b)), ™

{3) The third step was to obtain the differeneebet ween the mean
rank for each eolumn and the theoretie: 11 :wan 35,0, hp i Ly,

where p is the number of ranks. ¢ ;,

(43 The sum of squares of the (llﬂ'u{‘nuw 1} (1) was obtained.
(5] Then ¥ was found as follows: QO
12 " v!;:" N
t— 2t MY s ) - Balp 1 (8.03)
X np(p + 1) Z (Z r_) n(p ) :
LR i

where r, is {he s 1\%*@11010(1 in the 7th row and the jth column: »
is the number uf nks averaged.  Thus:

NG 128

%2 i = 99 9!
.'x\“.x = 0% ) (0.783376) = 22.365

6) T ILQ}\*” tuble 13 entered with 5 degrees of freedom.
(7 \mw I is less than 01, it was inferred that there was o signiticant
\association hetween socioeconomic status and college altendance
\ where college ability was controlled.

Wallis (ef, | ) gives a formula for caleulating the statistie, g, the
rank correlation ratio:

co BTN

ki ?1p(p- —13/12 n{p — 1)
from which 3 = % = 5501 (8.0
and 7, = 75

Im"'“y the value of .75 is an estimate of the rank correlation ratio
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between socioeconomic status and percentage of college attendance when
college aptitude is contrelled.

The Case of Multiple Rankings. The problem arises in practice of
how to determine the agreement among a number of rankings and how to
obtain an estimate of a true ranking if a significant concordance among
sets of rankings exists. "This is the case when there arc m rankings of n
instead of two. For instance, a group of students might be asked to
arrange the photographs of a number of persons unknown to them with
respect to their judgments as to the unknown persons’ intelligence, It
is desired to test whether there is a community of judgments between the
students. Of course this experiment is not equivalent to determining a
relationship based on order of experimental findings, There“eould be a
substantial agreement about an incorrect order which might be different
from the one established by the score of a valid and. felidble intelligence
test. m'\ﬁ'

Problem VIIL.3. Computing and testing'the significance of the
coefficient of concordance. Let the following yepresent the rankings of
three obscrvers of 8 objects, Ay, . . ., A<\ ’

287 Objects

Ohserver —
Al -(12 - "'-‘:13 A4 ."15 1.15 A;v As
:...‘\
1 7 i 2 6 5 3 1 8
2 A N2 1 i 6 3 b 8
3 A 2 1 6 4 5 3 8
Sum of ranks [\ I8 8 4 19 15 n- [ o 24
:"\.:’
Th‘é{ﬁéﬁ of the sum of the ranks of the columns must be 108, that is,
mn(nsh 1) .
——T5 where m is the number of observers and 7 the number of

‘abjects. If the concordance were perfect the sums would be 3,69 12

15, 18, 21, and 24, though not necessarily in that order. If thore is

little or no agreement, the sums are approximately equal. The variance

of these sums gives a measure of the ranking concordance.

- Kendall (Reference 9, page 411) derives a coefficient of concordance,
, 88

128

= m (805)

where §is the sum of the squares of deviations from the mean, m(n + 1)/2.
If agreement is perfect, then the sums of the columns are m, 2m, . . . ,
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nm and the sum or S is m*(n® - n)/12. The range in values of W is
from 0 to 1

In the example above,
min + 38+ 1) N
- = g — = 13.5
S = (18 — 13.5)% + (8§ — 130)2—1— (4 —13.5)2 4+ (19 — 13.5)2

+ (15 ~ 13.5)2 4 (11 — 13.5)% + (19 — 13.5)2 + (24 — 13.5)*

= 320,00
- 12(320}
W= g(8s — &) O\
= .83

Meun =

o\

To test the significance of an observed value of W, it is edsantial to
determine the distribution of W (or, more conveniently,, of 8} in the
population, which is obtained by permuting the n rank€in 4ll possible
ways in each of the m rankings. Kendall (Ref, 6) gives\ﬂie distribution
for some low valucs of » and m and indicates how toaDgroximate for large
values through the use of a continuous dlStI‘IbI]J:}QH The latter can be
done by the use of the zdistribution w here \‘

and n = (n— 1) N} E’ (8.07)
= (m \1) Kn —1- %)] (8.08)

\\
In making this test f 01:,:1;3\1-' values of m and #, it i desirable to apply the
usual correction for'edrtinuity by reducing S in Equation (8.05) by unity
and increasing thedivisor by 2.
We shall ﬂ{gtrate by testing the significance of the obtained value,
W = .83

AN . (320 = 1)
QY Yo g +2( 4)‘84
1 23(.8
vr =22 =%

For o, = 6 and vy = 13: 201 = 1.0306.
Hence, for z = 1.1759 P < .001.

The ¢stimato of the true ranking of the objcets is intuitively given by
taking as rank 1 that object whose sum of ranks is the least. In our
Problem that, object is Aj, followed by objeets Az, Az, Ag, Ag, Aq, Ay and
Ag. This ranking is obtained by rearranging the 8 totals in rank order.
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This solution is given a firmer theoretical basis by showing that it is
“hest” in a least-squares sense. If any two of the S's are cqual, this
method is indcterminate, and priority would be given to the objeet
which has the lesser sum of squares of ranks. Where two objecls have
the same set of ranks, the specific ranking of each can be decided by
tossing a coin or by selecting the ranks in a way most unfavorable to the
hypothesis under test. An alternative solution might be obtained by
splitting the ranks, giving each of the doubtful objects the same rank.
This method, however, introduces severe theoretical difficulties in making
tests of significance. O

The Method of Paired Comparisons. In the method ol puired com-
parison, the observer compares each object with every olhetvtme. He
indicates which object in a pair he prefers. This method Was developed
in psychology in tho late 1890's. s use, ho*.ve\-'er,.;\{';ié' limited to that
of a descriptive statistic. Recently, statistical{hethods have been
developed for tesling the consistency of anViidividual’s comparisons
and also of the agreement between observers.onjudges. ‘These develop-
ments should cnhance the value of the mfebhod for research purposes,
particularly for the situations for whickiMtilias & unique valne. ln rank-
ing, for example, if the quality under.tonsideration is not measurable
on a lincar scale, the resulting ranlifig may give not only a faulty presen-
tation of an observer’s prefercneéiBut also of the variation of the quality
in the individuals. Thus in §iidging preferences in musicul composition
it is not unlikely that an apditor would judge A as preferable to B, B to C,
and C to A, “Inconsiattﬁt " preferences of this kind eould not oceur in
ranking, since, if A i placed above B, and B above C, then A is aulo-
malically placed above C. Cases also arise in which the judgments of
untrained indixiditals are wanted who might be capuble of comparing
pairs of indiyiduals with respect to some quality but would not likely be
able to I’@E}“ﬂﬂ the members of even 4 relatively small group. In animal
eXperiments or in experiments with very young children, for example, in
deterfpining food choices, rankings would not be possible. But paired

y eqfaparisons could be used by presenting the food in pairs and noting
which food was eaten first,

Cocfficient of Consistence in Paired Comparisons. Kendall (Refs. 6
f'ind_ 8) gives & method of deriving a coefficient of consistonce which
_mdlca_tcs.hmv cousistent a judge or observer is in making preferences.
If an individual observer produces a configuration of inconsistent, prefer-
ences, the reasons may be that (1) he js incompetent to judge, (2) the
differences among the objects may be too small to deteet, (3) the attention
of the O.bserver may wander during the experiment, (4) the quality under
comparison may not be representable by a Hnear variable.

With n objects, each of the possible patrs, (%), is prescnted to the
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subject and his preference of one member of the pair is noted. If the
object A is preferred to B, it may be indicated ag A — B, TIn general, if
an observer makes prefPreneob of the type A>B—-C—>D—>E—F
. there Is no inconsistency, and this case corresponds to ordinary
mnkmg The criterion of inconsistence is the “cireular’ trind. Tf the
n objects are considered as the vertices of a regular polygon of n sides
and each vertex is joined with every other one, the direction of the choice
can be indicated. Thus, if A is preferred to T, the symbol in the diagram
is A — B. Any triangle in the figure in whic h the arrows all pomt,LQ the
same direetion is a “eircular” trind, Thus, if an observer malkes pref-
erences of type A — B — € — A, the triad ABC is said to be in€0nsistent.
Kendall (Ref 6) proved that the ma}(lmum powbl«e Nhumber of

7 ™ if nis odd and * 24 .
number is zero. If d is the number of circular triatl% in an observed
configuration of preferences, he defines {, the coeffigient of consistence, as

cireular triads is =

" if is g¥ en; the smallest

24d o
P11 madd)

. (8.09)
i- = ]_ - m{:’ (?1 e\’en)

From these cquations, it is ohgetved that ¢ is unity when there are no
inconzistencies in the configuration. As the coefficient decreases to ZETO,
the inconsistence, as dettrm@ed by the number of circular triads, increases.

The next problem fg%o"determine the statistical significance of ¢, that
is, to answer the quéstion: With what probability can an obtained value
of { arise by chafiég"if the judge assigns his preferences at random in
relation to the.quality under examination?

With n crb;jﬁ( ts, the numher of possible configurations of preferences

is 2( ) *lxendall discusses the procedure of investigating the distribution

of d m\thls population of 2(2) different members, namely, the method of
pi-c{caedmg from the distribution of n to that for (n 4+ 1). He gives
tables with the frequencies and probabilities for the distribution of 4
for » up 1o and inc¢luding 7.

Cocfiicient of Agreement for m Observers. Kendall (Ref. 6) derived
a cocfficiont of agreement in which the judgments of m observers are
obtained by the method of paired comparisons. The coefficient u is
given by

2)

GG

(8.10)
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where m = the number of observers, n = the number of objocts judged,

E = total number of agreements between judges:

| 3-36)

where v i3 the number in each cell,

The coefficient of agreement, v, is unity if and only if there 18 unani-
mous agreement in the comparisons. Tfs minimum value ig'de only
when m = 2, Kendall gives tables which enable one 1o mafle an cxact
test of significance of w for the following values of m and 70 = 3,n=2
to8;m =4 n=2t06;m=5n=2t05m= 6, n =\ZTo 4. Ile has
also demonstrated that the x*-approximation providesan adequate test
of significance for values of m and # outside thelamge of the tubles.
The expression \/

Lofmym —3N4
[z ~gh (2)51T\2 m — 2 (8.12)
3 4 3
is distributed as x? where N = (;): :%-’ith

Nm(m3M)

v = (mffg)—zl degrecs of freedom (8.13)

Problem VIIi.4. Q@l‘cﬁlating the coefficient of agreement. A class
of 67 ninth-grade hidys were asked to state their preferences with respect

O

O TABLE 44
PREFER;E&T?JES oF 67 NINTT-GRave Bovs 1y 6 ScHooL SunIncTs*
:““. [ : i
.,s%x;uect 1] 2 | 3| 4 ‘ 506 78|09 ! Totals
= T
é.’\"‘lgh:s-*aka_l Cducation. .., .. - 14186 |56 58 | 56 58 |57 ' G2 443
Nndustrial Arts. ..., 261 .. | 57 155 | 57 1 56 | 54 | 60 | 63 ‘ 123
8. Literature.... ... . 121101 .. 128 |36 |88 |36 ;40 | 60| 260
4. Mathematies... .. .. . 112039 . |20 |34 40587 |31 253
5. Bocial Studies.... .. . 9010|3188, .. |34, 40 | 40 517 253
6. %e-mn_ce ................. P11 20|83 331 .. (38|43 53 249
7 8pelling. ..., . ] POL18 8L 27 |27 3| . |34 48 220
B Art...o ‘ 1007127130 127 |24 (33| |47| 205
9. Composition ..... .. . Sl 41 vl16]16] 14|10 20| 101
el B 41 7 16 , 1
Total 24712

* This {uble is read by considering the subject at the loft of cach row as being pre-
ferred v times over the suh Ject at the top of the column which locstes any particular

square, where v is the number in that Square. For example, Physical Education 18
preferred by 41 bovs over Tndustria] Arts,
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to 9 school subjects. Each boy was asked to Place an X in front of the
one member of cach of the 36 pairs of subjects which interested him more
when he studicd it. The preferences are shown in Table 44. The
problem is to determine the similarity of preferences among the boys,
The measure of sgrecment is the coefficient of agreement as given in
Equation (8,10},

The caleulations required are as follows: The caleulation of Y as
iy

7
given by Bquation (8.11) can be shortened when the objects are arranged
in order of total number of preferences by using the following relatiény

N s
¢\

= Do =my o+ (3)(2) O e

§ N

where the summation is now carried out over the ha-]f‘}f’\%he table below
the diagonal. The numbers in this hulf being smAle¥ than those in the

other half, the arithmetic is simpler. N
2(y?) = W I - - - TEE 17,914
2y =26+12 - - - 20712
mE(y) = (67)(712) = 45704
mY 67 X 66 L%
(2) =—5 = 2211
0~
N

my fny A _ =
( 2) (2)\,{7-”,(2211)(35) = 79,596
\E = 17,914 — 47,704 ~ 79,596 = 49 806
."\$~ -

L) J
AN _2X 49806 | _ o0

Hen \ =
o R\ “ T Ter\ (9
~O 2 /\2

\™
To test the significance of u, we caleulate x? according to Itquation
(8.12). Thus:

1/9\(67\67 —3] 4 _ ___ ..
{49,806 -3 (2) (2 ) 57 — 2] 67 — 2 653.57

ig distributed as x2 with
9 .
(2) 67(66)

YT GT— 9
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or 37.7 degrees of freedom. The large value of v justities the use of the
normal approximation to the x>distribution. Then

v (2xH — V2 — 1 =42

This iz a highly improbable result on the hypothesis of u random assign-
ment of preferences, Therefore, the coeflicient 0.2515 is statistically
significant. [t may be concluded that there is a eertain amount of agree-
ment, though not a strong one, among the boys in their preferences for
b('h(){}l subjects. A

Problem VIIL.5. Measuring the consistency of choices by use of
paired comparisons. The distribution of circular triads o n random
sample of 15 ninth-grade boys and the coefficients of Cnsistence for
preference in school subjects calculated from [2 quauon (8 09) were as
foliows:

,*.\

Student Number d W

1 0 iND0O

2 0 /AN .000

3 0L % 1.000

4 N 1.000

5 ) 1.000

6§ N 0 1.000

7T N 0 L.000

Bal® 0 1.000

P 1 0.967

L10 1 0.967

SN 1 1 0.967

\ 12 1 0.967

™ 13 3 0. 867

O\ 14 3 0.867

.'\" 15 8 0.733
For 8 OQf’l}e bovq there were no eircular iviads. Therefore, the cocffi-
clqus were 1,000; that is, § = 1 — __g;(ﬂ) 5~ — 1.00. Tor the remaining

@)there were 4 cosfficients of value 0.967, 2 of 0.867, and 1 of
07733.

It may .bc concluded that these students were able to give a consistent
set of choices of school subjects by use of paired comparisons. The
reader is invited to validate these conclusions by making the appropriate
tests of significance.

ProsrEMS
1. Before an examination, a teacher ranked her class of 25 students
according to their cxpectod achievements. After the cxamination,
the rank was detormined according to total score. What can be said
about the feacher’s estimation of the abilities of the students?
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- . Fxami- ‘
Studeni Leacher’s nation
rank
rank
8 1 3
b 2 1
o 3 9.5
d 4 22
© 5 4
i [§} 18.5 \
g 7 11.5 £\ °
il 3 i% V'\\“
: - 2\
1 g a, \J
j 10 21 e
A )
k 11 7.6 D
1 12 LEIPAN
m 13 14 \\\
n 14 (ﬁ\
[ 15 9 \d
¢
P 16 2O s
a 17 iw» 25
r 183 8
8 :19; 16.5
t o820 15
U Y21 20
w{\ 22 23
:’ﬁ\\ 23 13
Y 24 18
P \ ¥ 25 i1.5
t»\\wL

N
2. Combine t éihf;rmation from two tests of signilicance, the chi-square
test, and{i{&? rank corrclation coefficient applied to the data in Problem

11, Chstér V, page 100,

3. Th@j}f”xhlowing tabulation represents the rankings of 5 students based

@ﬁ}ﬂeir preferences for four different musiesl compositions:

Composition

Student |
_’-1 I :1 2 /1. I A 4
1 1 3 4 2
2 2 1 i 4
3 2 3 1
4 2 1 4 3
& 3 1 2 4
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(a) Compute the coeflicient of concordance and test its significance,

(b) If a significant concordance among the sets
combine the rankings to obtain the estimate of the true ranking.

4. The following data represent the rankings according to interests in

high-school subjects of a random sample of 28 boys in the eleventh

of rankings i3 found,

grade. The rankings werc obtained by three different methods: (1)
paired comparison, (2) order of merit, and (3) rating.
Ranlks of subjects A
Method < 1O\
Phys. | Ind, . . Boe. | o | a gy .
Bl | Arts Lit. | Math. | g " | Sel. &5‘1(@. Art | Comp.
Paired comparison. .. .. 1 2 3 4 S5 pNe 7 8 9
Order of merif. ... ... 1 2 | 4.5 4.5 Wbl 7 a9
Rating................ 2 1 |4 6 \3 ‘ P S I a
a1

W

(a) Test the significance of the difference in ranks by the three

methods.

*

1

(b} If a significant associatimjlfj:i.. found, estimatc the amount of
association among the tﬁi:tz(: methods.

B. The following tabulation. shotvs the preferences of 67 ninth-grade girls

in 9 school subjects: N

71

L AN
_ \ | CoT ] .
Bubject ) 1 2 '3 4 5 ;6,7 8 91 Totals
A \ / —_ | — | | — —_— | —— - ———
. '\“ . o |i x
1. Literaturce 4/ . .......0 .. | 33 | 41 | 41 | 45 | 48 | 51 o6 | 60 - 375
2. Tlome Feonomics. .. ... .. 34 | .. |28 |8%:41 |48 |50 | 50| 59 358
3. Physi@aNTducation ....... 26 |20 . |28 ]34 |40 |46 |53 |58 3M
4 Spelng................. 2% 12036 . |34!38 |45 4648, 305
5, Mathematics.......... .. 22 |26 |33 |33 | .. |39 45|45 41] 28
%ﬁi ﬁl‘t.‘ ..................... 19 |19 [ 27 |20 |28 | .. | 42143 |4 251
Wiocial Studies. ... ... ... . 16 |17l 21| 22122 |25 | .. 36| 36| 195
8. Composition.......... .. T11 | 171401212224 |31 |..|32 172
9 Belence............. e T 8] 9192628 3133 _.__1’18__
Total 2412

(a) Compute the coefficient of agreement w.

(b) Test the significance of .

"(c) Compare the value of u for girls with the value of « for boys from

the samc school given®n Table 44.

6. Construet, administer, and analyze the results from & test designed to
measure the attitude and its intensity of a specilied population toWar
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some pressing edueational issue. (Consult Guttman, Louis, and
Suchman, Edward A., “Intensity and a Zero Point for Attitude
Analysis,”" American Sociological Review, Vol. 12 (1047), pp. 58-67.)

References

- Friedman, Milton, “The Use of Ranks to Avoid the Assumption of Nor-
mality,” Journal of the American Statisticel Association, Vol, 32 (1937),
pp. 675-701,

- Guttman, Loais, “An Approach for Quantifying Paired Comparisons and
Rank Order,” Annals of Mathematicnl Statisties, Vol, XVII (19488 pp.
144-163.

» A Basis for Bealing Qualitative Data,” American Soeiglogical
Review, Vol. IX (1644), pp. 139-150. AN\

. Hotelling, Harold, and Pabst, Margaret K., “Rank Correlation’ and Tests
of Bignifieance Involving No Assumption of Normadity,”gmymls of Mathe-
matical Stotisiies, Vol. VII {1936), pp. 29-43. o\

. Kendall, M. G., “A New Measure of Rank Correlatidn ¥ Biomelrika, Vol.
XXX (1838), pp. 81-93. QO

y The Advanced Theory of Statistics, Vol, 1. London: Charles Griffin &

.
Company, Ltd., 1945. Ve \d

7. , “ Partial Rank Correlation,” BiometrikayVol, XXXII (1 042), p. 277,

. > and Bmith, B. Babington, “On fheMethod of Paired Comparisons,”
Biomelrika, Vol. XXXT (1939), pp. 324345,

9 , and , ““The Problem of WRankings,” Annals of Mathematical
Slatistics, Yol. X (1939}, pp. 275287,

10. Olds, E. ., “Disgtributions of Susas 6f Squarcs of Rank Differences for Small
Numbers of Individuals,” Andinls of M athematicol Statisties, Vol, 1X (1938},
pp. 133-149. <

I1. Rosander, A, C., “The 2(3‘3}., of Tnversions as a Test of Random Order,”
Journal of the Ameri aﬁﬂtatisticaﬁ Association, Vol. 37 (1942), pp. 3562-358.

12. Seheffé, 1Menry, ““Statistical Inference in the Non-Parametric Case,” Annals
of Mathematical Stapistics, Vol. X1V {1943}, pp. 305-332,

13. Schultz, Frank XG4 “ Recent, Developments in the Statistieal Analysis of
Ranked Dyppddapted to Edueational Research,” Journal of Experimental
EducationsXol. X111 (1943), pp. 149-152.

14. Wallis, WoNMtlen, “The Correlation Ratio for Ranked Data,” Journal of the
Amerdegh Statistical Assoctation, Vol. 34 {1939), pp, 533-535.

15. Wilks,\8, S, “Order Statisties,” Bulletin of the American Mathematicol

~Sochely, Vol. 54 (1947), pp. 6-50.



CIHAPTER IX
SAMPLING THEORY AND PRACTICE

We shall now attempt to make available to the reader some of the
results from investigations about sampling from the point of view of their
use in the construetion of clearer, more concise, and befter-organized
designs of sampling surveys and experiments. [t is expected £hhi the
reader will become able to extend and decpen his knowledge {ﬂ‘\sa.mpling
principles by further reading of the more fcchnical aceounteand to apply
his knowledge to the particular scientific problems in'\\’-‘lﬁéh he Is inter-
ested. Although our chief interest here is in the emi')iﬁ’cai or uhserva~
tional parts of applied statistical science, the t-hemt&t-‘ical part previously
developed is basic. Here, as elsewhere In scienéc,” both the theoretical
and empirical parts are essential: the progress, bf a science is dependent
on their reciprocal influence and simultaggiéﬂs advancement,

The theoretical part of science is, presumably, based on exact ascer-
tainments, and its purpose is to dev)grldp the sirueture, relationships, and
results of hypotheses. The appropriatencss and applicability of a con-
ceptual model involve the confrmation or refutalion by observation
of the hypotheses which enter™into the model. The hypotheses must be
changed if they are not siipported by experience and observation. An
adequate scientific methiodology cvolves through comparisons and evalua-
tions of scientific t;h}eries, both from the standpoint of their essential
parts and their gficiency in practice. The more explicit the theory is,
the more amemable it becomes to the detection of errors or deficlencies
that it may Possess.

Obsqu&t‘ion is the basic process of empirical science. The empirical
side gff seicnce obtains, criticizes, and systematizes the obscrvations.
It :u;gtités the observations with the theoretical propositions and in this

\i’h}?ce“ may reject the hypotheses of the theory, if found necessary. It
sHould be remembered, however, that the empirical side of science 12 algo
directed by hypotheses. The specification of the conditions under
which the observations are to be made and the form in which they are
to be collected are governed or guided by theory. Within the reeiprocal
relationships, it is probably mutually advantageous that the speeulative
and the observational sides of science should work somewhat inde-
pendently, each by its own specisl method.

Although statistical theory has been concerned chiefly with random
sampling, considerable resourcefulness, based perhaps chiclly on cormon
sense and intuition, has resulted in the development of new and offective

184
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systems of sampling designs.  Much study is being given to the develop-
ment of needed statistical theory basic to estimating the relative efficiency
of different systems of sampling. Sampling is an excellent illustraiion
of the Iink belween theory and practice and of how diffeultics are dis-
covered and resolved as they arise in the problems met with in expericnee.
From an early date, governments have engaged in the collection of
statistics of population, commerce, production, comsumption, prices,
wages, income, and, more recently, with problems of social nced and
human wellare. Hence, statistics was originally political arithmetic to
a great extend.  The standard method for the collection of these statistics
has been complete ecoverage and enumeration, of which the clissical
example is the population census. Theoretically, at least Ao those
population characteristics which remain relatively (’DDSEdELT: this pro-
cedurc appears to be the best. But such an und(‘r‘rakmg iz costly,
difficult to plun and conduct, limited to a relatively fey #oms of informa-
tion, is time-consuming, and is Hable to be out of.date by the time the
rcsult-s are published. In fact, the governmetN\dven with its great
resources and facilities, can carry on complete gehstises only at rather long
intervals. The exigencies of the World Wat T1 required the collection
of many types of data which could onlybe’ done by the use of sumple
surveys. If is ulso worth noting that athér governmental investigations
had at various times resorted to s%im})ling In the 1940 census, for
mstance, the Bureau of the Cenga¥%was able to broaden the scope of its
inquiries by including a set, of® supplementary questions which were
answered by a sample of 1{erkon in 20. Special sampling surveys for
seouring statistical infor a,tfon are now often made by unofficial ageneies
and by private 1nd1v1dua}*s usually to provide the lacking official statistics.
In recent years,se’have witnessed the extension of sampling meth-
ods to a great diversity of situations and for a variety of purposes, for
example: D>
\ \
(1 To ﬁnd out the most efficient particular paltern and location
N of the obgervations in an experiment in physics,
< (2} To sample a growing crop for sfudies in plant physiology,
agricultural meteorology, and others.

(3) To cstimate the amount of acreage devoted to a particular crop
or to forecast the expected yields from the economically more
imporiant crops.

{4} To investigate the nature and extent of economic and soeial
problems, such as unemployment, housing, delinquency, and
erime.

(5) To discover the factors influsncing consumers’ demands.

(6) To measure public opinion on political, economic, and similar
problems; to detect the effects of propaganda.
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{7) To determine the frequency distribution of the length of sen-
tences or other factors toe characterize the styles of various
authors.

(8) To investigate loeal government by examining the local laws
in a few selected years over g 200-year period.

(9) To study methods of technical control in the manufacture of
technical products.

(10) To ascertain the location and frequency of individuals having
special talents, such as persons able to withstand the rigors of
dive-bombing, or individuals with ecrtain types of coléishblind-
ness that make them valuable as observers who cuh detect
camouflage, R N

Most of these investigations would probably be impos#ible from the
standpoint of expense, time, and utility of findings 4i‘ itdwere necessary
to investigate the whole field of inquivy in any detajld “urthermore, some
investigations requirc destructive tests; hencextliete would be no point
to the investigation if the destruction of the wlole were essentinl.

Sampling, of course, is an everyday a’ﬁ@ir. From time immemorial
it has played an essential role in carrying sut common human activities.
Primitive man who sampled food before’he gave it to his children rolied
on the statistical principle of sampliffe without knowing that he did so
or that such principles exist. Théfmndern housewifc relies on the quality
of the sample before she purchases in quantity.

Probably because of theltapidly increasing use of sampling in experi-
mentation and in Surve}f'gudies, rapid development is taking place in
the theory and design“cf é.ampling invesiigations.

Sampling Degigns. The planning of sampling designs is usually
involved in twosituations: extensive survey studies, descriptive or
analytical; amd experimental investigations, which are more restrictive.
In both sitGations the sampling problem is that of securing uccurate and
represenfative samples. A representative sample i1s onc in which the
meﬁ-ﬁg’r’éments made on its units are equivalent to those which would be
obtained by measuring all the elements of the population, except for the
haceuracy duc to the limited size of the gample.

The principal questions which relate to the setting out of an investiga-
tion by sample are

(1) What is the best size of the sampling units?

(2) What number of sampling units should be used to secure the
desired degree of prevision in tho estimates to be made?

(3) What system of sampling will secure the optimum allocation of
the sampling units among the population or ils subdivision?

Population. To answer these questions, certain assumptions about
the unknown population must be made. It is fundamental to use meth-
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ods of sampling and of estimation that are based on & minimum of
unavoidable assumptions and that also make unambiguous their exact
implieations. It may be stated in advance that thero is not one faultless
method of sumpling. The method to be used is contingent upon the
nature of the material available and obtainable for the particular problem
under investigation,

In practice, most populations are finite in character: the universe is
compriscd of a finite number of members. The conditions of an infinite
universe, one which contains an infinite number of members, is assumed
to be fulfilled in practice by sampling with replacement. A largefart of
statistical theory is also built on the assurmplion that the universe is
continuous, that the members or some measurable variabldnteke up a
continuous set, >

A population is called exéstent if all members can belchumerated or if
the members ean be designated by a law of forma;t'mn For instance,
the inhabitants of the United States and the univérde of positive integers
are existent universes. In cards and dice gamesvand roulette, potential
universes consist of the millions of combifidtions of 52 cards, of the
millions of throws of a six-sided dic, and fll&lllﬂl()n“ of turns of a roulette
wheel with its 37 numbers. These need 9nly be imagined as hypothetical
universes, Likewise, a population':bf experiments i3 a hypothetical
universe. Ry

The ususal practice of the siatlstlclan is to refer to the bulk that is
being sampled as the populafien, the universe, or the szsppif,! The choice
of a population or univ QI‘&?& 18 8 necessary frst step in an investigation

basged on samples. TY adéfinition of the population to be covered in the
investigation is an mtegral part of the statement of the purpose of the
study. \

Bandomness\) The concept of randomness is fundamental in sampling
theory andpifwetice, but it is rarely if cver delined, except perhaps in
mathematieal language of which the following is illustrative: ““ A sequence
of Variafes* %1, « . ., To 18 s2id to be a random series, or {o satisfy the
colldzﬁion of randomness, if #:, . . ., &, are independently disiributed
With the same distribution; i.e., if the ]omt cumulative distribution fune-
tion (c.di) of zy, ..., 7. is given by the product Fiz\) . . . F{z.)
where F(z) may be any e.d.f.” (Ref. 10).

Restriclted to the written word, the condition of randomness seems
to be basod on certain intuitive principles which give practical results.
Randomness is a fundamental idea in conncetion with the selection of
values of a variate from a population. The principle is implied in the
criterion of random sampling that every member of the population
should have an equal and independent chanee of being included in the
sample,

Tests of randomness arc of the greatest significance, since statistical
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inference is strictly valid only for random samples. It is also u matter of
great practical and scientific importance to defiermine whether the fluetu-
ations manifested by & serics of observations are randem in character or
whether they may be assumed to be the outcome of some factor operating
under a definite law.

Testing for randomness i3 an Important problem In quality control
of manufactured products and also of specisl imporiance in the analysis
of time series. The need for such tests has resulted in considerable
research for criteria of randomness,

Bias. Tf a sample has been chosen from a population in sucles way
us not to be a random sample, then no valid estimaie can be mads {rom
it of a population parameter.! If a sample has been scleeted bxArandom
method, it gives a result that progressively a})}')l‘()::l,(:lm:-;.T,h}‘, population
valuye as the sample is inereased in size, assuming that avabizsed method
of estimation has been used. If the results obtained/dre too high or too
low, then the sample is ealled biased. The differefiee between the value
determined by a very large semple and the Parameler or population
value is termed an error of bias. , N

Errors of bias follow no known laws Gyswhich their amount might be
estimated. Errors of bias are incorgosited, therefore, with random
errors and may thus result in spurious estimates of the Iatter. In sam-
pling designg cvery cautlon is qegéés’ary to avoid errors of bias, Lven
if an efficient method of sampliﬁg has been used, errors of hias may
arise in a number of wayse\ For instance, biases have been ohserved
in sampling surveys of deuseholds where nobody was found at home
when the interviewe{'\’ ealled for the first time. The smaller the
family, the smaller are the odds that some one will be at home. Unless
the visits are cop{inued until completc enumeration is obtained, eyrors of
bias will arise @,,connection with size of families and other characteristics
associated sith it. Other instances of bias in sample surveys may be
traced ju?lmtors such as bias and irregularity in the interviewer, imperfec-
t-ions.rin’ the design of the guesticonnaire, and crrors arising from non-
responte on the part of the interviowee.

JA classical example of biag arising from an unreprescntative selection
of respondents and from the erroncous belicf that  large sample could
overcome such an error is furnished by the attempt of 7he Laterary
Drigest in 1936 to predict the results of the Presidential election. Approxi-
n.ﬂatd'Y ten million post cards were mailed to people whose names were
hsted'm te'l_ephOHE% directories and in files of owners of automobiles.
the 2,350,176 replies reccived, only 40.4 per cent were in favor of Franklin
D. Roosevelt for President. In the clection, he received 60.7 per cent
of the votes cast. The error of bias was, therefore, approximately 20 per

<

!In systematic sampling, for . o . - ele-
& i A ) mstance in stratified sampling, the number of
ments to be selected from any stratum must be selected st lmné’{dm.
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cent. The sample was biased in that the respondents did not constitute
& random sample of those citizens who voted in this election.
Questionnaire studies in which the sample sclects itself, voluntary
replies to requests for opinions on some controversial issue, and letters
written to edilors of newspapers—all are likely to represent mainly
persons who have strong views on the issues one way or another.

SYSTEMS OF SAMPLING

The origin of the sampling problem is in the neeessity of estimating
certain characteristics of & population usually so large that, it is practieally
impossible to examine every member of the population, or so large’ that
the time and cost required to do so would prehibit the undettaking.
In this undertaking, it is essential to consider how best to t’ak,c\ the sample
and to obtain the estimates, and with what precision thesestimates have
heen made. The fundamental statistical problem is{ARerefore, that of
estimation. O

Unrestricted Random Sampling. A particularly simple forin of
sampling technique is illustrated by the glassical urn problem. By
counting the number of balls of each color.ih the sample drawn from the
urn, the relative proportion of balls of different colors in the sample is
determined. From these proportiongithe color composition of the balls
in the urn is inferred. By using th&“properties of the familiar binomial
or muliinomial distributions, the}%h’afgin of error of the estimate can also
be caleulated. S

An analogous situation{In principle might be the estimation of the
occupational classificaiiph.of the from 16 to 17 millions of men, twenty-
one to thirty-six year&s& age who in 1940 registered in accordance with
the Sclective Scryige/Act. Let us assume that each individual had a
registration number which was writter on a paper and enclosed in a
separate capsaléand that all capsules were placed in & container utilizing
compressed\:&i} to secure a constant rotation. One thousand capsules
would bel drawn at random and the correspending oecupations ascer-
tainedi In order that statistical prineiples might be used in a valid way,
it fandaments] that each member of the sample should be chosen
stricﬂy at random, which means a method of selection by which each
menber of the population has an equal and independent chance of being
mecluded in the sample, and that the method of selection is completely
independent of the characteristics to be examined. This is the method
of purely random sampling, sometimes called wnresiricted or the unitary
unrestricted typo of sampling,. This method is regarded as being capable
of giving the most accurate results in cases where the elements of the
statistical population have equal chances of inclusion and where there is
no prior knowledge of the population sampled to provide a basis Tor
selecting individualg.
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Systematic Sampling Methods. In contrast to the method of simple
random sampling, a numbcr of methods have been developed which
may be called sysiematic methods,  These methods utilize prior knowledge
of the individuals comprising a universe with the view to increasing
accuracy and representation of samples. They generally use more
complex forms of random sampling called represeniative sampling.

Stratification. One of these systematic methods i hased on the age
of knowledge of population characteristies, first to divide the population
into more hemogeneous groups or strata and then to select at random
the sampling units from cach of these groups. This meihod é&Sbeen
called restrictive random sampling or the method of strafifications « 1t is in
effect a weighted combination of random subsamples. Aariets prin-
ciples have been used to distribute the sampling units amohg the several
strata. One, called siratified proportionate sa-mpi'a.'ng,“i}é' based on the
distribution of sampling units purely proportional t4 fhe total number of
units in cach stratum. In simple random sandphlg this proportion is
left to chance. Another basis is to take the aimber of sampling units
per stratum proportional to the product 6frthe number of gampling
units in the stratum by their standard deyiations.

Stratified sampling is used in the Gallup polls of public opinion in
order o secure representative propdrélons of various classes of people
rather than to rely on the chancg™determination of these proportions.
In the interviews that are madegeach subject supplies suflicicnt informa-
tion about himself to permithclassification according to (1) part of the
country, (2) the urban_ pr,\rural district, {3) sociceconomic status, (4)
political afliliation, (8)age, (6) sex. The particular type of stratification
used depends on theMproblem under inguiry,

While some migress has been made, the methods in use for predicting
elections are Dobuyet scientific.  Among other hazards, the sample design
may reflecteerroneous judgments as to the Inctors (used for controls in
ﬁt'r%tiﬁ C‘:‘ﬂiﬁ%ﬂ") truly associated with the characteristic under investigation.
Se‘mo'u'a;: 'biases may also be introduced because the selection of the sam-
pling tnits within a stratur to be interviewod is not done at random, mak-
il’ng # tpossible to obtain an unbiased measure of sampling ervor from the
1nterna1. evidence of the responses themselves. F urthermore, the
population composed of eligible citizens who subsequently go to the polls
and vote is difficult, if not guite impossible, to specify in advance of
sampling and the trait iteelf ig susceptible to change without notice.

Cluster Sampling. The method of stratified sampling is also used
where the unit of sampling is a group rather than the individuyal. This
method,b sometimes called cluster sempling, is especially important in the
study Oif ‘humfm populations when the individuals are often grouped (a3
by familics, inhabitants of single houses or apartment houses or of
blocks, and so on) as in the tensus, for instance, and it becomes very
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difficult to sample individuals at random under such eivcumstances.
Most uses of this method apply a system of “cxclusive units,” where no
individual or group is included in more than one sampling unit. Mahal-
anobis (Ref. 19) has used a variant of the method called the *“zonal
configurational” type or the “overlapping system of grid sampling,” in
which the same individual or group may form a part of more than cne
sampling unit. He points out that this method iz analogous to sampling
from an urn with replacement.

FPurposive Selection. A method of systematic sampling essentially
different in principle is that which is called purposive selection, Ix@head
of making a random sclection of the sampling units within stratd, this
method selects such groups of units that have the Weighyét} sample
means of certain characteristics, the controls, in close agreement wilth the
population values. This method might save time and/labor at times.
However, it has often proved to be very hazardo\ué vand inaccurate,
probably because the sampling units are large and\few in number, go
that it is difficult to secure a representative sample. Furthermore, the
method hypothesizes a considerable know}c@e of the population in
advance of the sampling process. This ipi‘xorination is not often avail-
able, and it has been found in 4 particul®ase that the facts about the
population needed for controls servedonly for the particular year when
the sampling survey was made (Refi 28).

Applications of the purposivg tethod have been made in certain
economic surveys by selecting so-called ““typical” counties. The prac-
tice of selecting a particulafehool or groups of schools in which experi-
ments are conducted guiiy/also be illustrations of this method, espe-
cially if gencral conclusions are drawn for ihe cdueational factors under
investigation. P Nl \

Double Sampltng. A method of systematic sampling designed espe~
cially for samglihg human populations is the one called dowble sampling
{Ref, 21). ,‘ihis method involves two sampling investigations, Tho first
congists it drawing a large unrestricted sample from the population,
determining for each individual the value of the character, the collection
ofinformation on which is easy and relatively inexpensive. This
secofidary character is known to be closely correlated with the primary
character with which the investigation is conecrned. The collection of
data concerning the values of the primary character is expensive. The
second investigation conmsists in drawing a small sample in which the
values of both the primary and secondary characters are ascertained. In
this method, diseussed by Neyman (Ref. 213, the large sample is used to
stratify the population into groups within which the secondary character
is relatively homogeneous. Since the two characters are highly corre-
lated, this procedure will also result in an effective means of strafification
with respect to the principal character. It is possible, therefore, to
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proceed with the drawing of the small sample out of the strats comprising
the large sample. Accordingly, a more accurate estimate of the primary
character may be expeeted to be obtained from the stratificaiion based
on the first investigation. The first sample must be large cnough 1o
provide an accurate estimate of the population numbers if increased
aceuracy of estimation is to result through the double sampling method,

A variant of this method is to find the regression of the primary on the
secondary character from the data in the small sample. The predicted
value in the regression equation which corresponds to the mean yvalue of
the second factor In the large sample iz then used Lo estimate the mean
value of the primary character for the tota! population (Ref My

Subsampling. Cochran (Ref. 1) deseribes a method galledsubsamgp-
ling, in which & sampling unit may itself be enumeratgdjﬁ? subsam pling.
There might be a hicrarchy of sampling units in multigbage sampling: for
example, sampling units might be selected in t-he‘f}ifst stage of random-
ization, within each such sclected unit. Smallgy’ sampling units then
might be seleeted by another act of randomization, and so forth, This
special form of subsampling has been .f{é}led “nested’’ sampling by
Mahalanobis (Ref, 19}. AN

Tur SpLECTION OF B SAMPLING SYSTEM

No simple prineciple exists \yhic{}i leads the investigator uniquely to
the selection of a system of sampling. From the many sampling designs
that can be constructed in gvder to answer the questions which prompted
the research, onc will be sdetted for application on the basis of the nature
of the problem, the efources and the materials available or obtainable,
and cerfain statistisal and administrative considerations.

From a statis\tﬁca] standpoint, the problem is to secure the best esti-
mate of the }ﬂq’pulation characters chosen for study. On the basis of
kn()wlcdge: qf. imiting distribulion theory and of best linear unbiased
est-imatl\as\}it i the usual practice to take the standard deviation of the
samplelestimate about the charactor estimated as the megsure of sampling
errery™ The velative efliciency of different methods of estimation is
©btained from the ratios of the reciprocals of the variances of sample
estimates of themean.  The statistical eriterion of efficicney is usually not
the only basis of deciding upon the sampling plan. Another principal con-
sideration iz the cost of the investigation.

The basis of planning, therefore, is the selection of a sample design
which combines precision of the resulig and expenditures in such a manner
t.I}at either the cost is a minimum for any specified precision or the pre-
¢ision is & maximum for any assigned cost.  Considerable work has been
done in recent years on the study of costs associuted with the various
sampling and estimaling operations, including the determination of the
relative magnitudes of variances and covariances between and within
various kinds of sampling units.
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Thus, although no eomplete theory with practical applieability is
available whereby the investigator always could be certain of selecting
the “best” sampling design and at the sume time the “hest process of
estimation and allocation of sampling units, considerable empitical and
scientific knowledge is available upon which an intelligent sclection can
be made. To a certain extent each field of study may have its own
peculiar sampling problems. But the principles so far educed have wide
and general application. Often an exploratory or pilol investigation
may save a good deal of time and unnecessary expense by providing useful
information of the cost and variance, or error functions. In addjiion,
the exploratory period can be used advantageously in giving trainihg to
workers in both ficld and statistical work and thus in contmllmg\rmstake‘*
and errors ariging from the human factor. N\

STATISTICAL ASPECTS OF SAMPLING DESIGQ:

The statistical planning of the program for th:{mmg ohservations
from samples involves the problems of specification_and estimation. A
knowledge of the mathematical form of the population s known or
assumed to be known, but the values of one pf/more parameters cntering
into the form are unknown. HFstimates Qf')ne or more parasmelers arc
desired, each with minimum sampling cfror.

In most statistical investigations b¥ ‘sample, a central problem is to
agcortain the value of an average (Rel. 5).

Consider & population = with'a parameter of location p and of dis-
persion ¢. A sample X1, X&N, . . , X» is drawn. A function of these
X’s, say u', where ’i*,\

‘}(\z ,u(Xl, XQ; e :!Xﬂ) (901)
is said to be a “mafhematical expectation estimate” of g, if the mean
value of u’ in repdated samples is equal to p. Further, the estimate of ¢/
may be said to'be"the best linear estimate of g, if it is linear with respect
to the X ’&,\

‘.' ;.t'_C1X1—I—62X2+"‘+CnX + o (002)
and J.f HE standard error is less than that of any other linear estimatc of p.

\The value of an average is
330

X= (9.03)

2 ()
k

where 7, is the number of sampling units in the kth stratum; X;., the
value of the variatc in the 7th element of the Ath stratum; Z(n:} may be
known or unknown, finite or infinite. The major sampling processes
such as random sampling with or without replacement, stratified random
sampling of individual elements, stratified random sampling of groups
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or clusters, double sampling, and purposive sampling ean be llustrated
and differentiated by the different grouping methods for each of which the

sum of ZZ (X)) in Equation (9.03) is obtainable.
73

Insight as to the arrangement of strata and the average to compute
has grown out of the study of the problem of estimation in stratified
sampling of groups. In stratified sampling, (9.03) becomes

¥ = () (st)

T 2
where X, equals the avorage value of X in the kth stratum, An*some
problems, it has been found, that, by choosing the strata o that the
regression of X, on some appropriately selected variate ¥ S linear, an
improved estimate of X can be made (sce Double Sampling, above).

In gencral, there is no unique unbiased estimapcddf a parameter.
Under particular conditions the best estimate can hefdund if the gquantity
is & linear function of the cbservations as in (9.02Nhove. A method and
the eonditions are given in a theorem by Marloff (Refs. 5 and 22).

It is possible t0 make the obtained estim}te the best linear cstimate
if another stipulation about the variation ’{):f~ the Xy's in strata correspond-
ing to different fixed valucs of ¥ and, 'n};.is fulfilled. Neyman (Ref. 22),
basing his method on Markoff's thearem, has indicated that the numbers
in the sample should be proportisnal to the produet of ithe number of
sampling units in & stratum b the standard deviat ion of the measured
character within the stratum,\ “The ““best ” cstimute is defined by the two
conditions that (1) it %;'éuld be a lincar unbiased estimate with (2)
minimum variance (sge Pquation 9.02).

A fundamenta] eondition in the best solution is that the total number
of sampling units @iwst be kept constant.  Tn Neyman's method the best
solution depepdgfon a knowledge of the population standard deviation
of each stm@’;m. Sukhatme (Ref. 26) investigated the offect of estimat-
ing the standard deviation of the different sirata by a preliminary inquiry.
He ggp(sluﬂed that 2 gain in efficiency takes place even in the case where
the papulation standard deviations, o)'s, are estimated from the sample
standard deviations, the 5’8, that is, when the o7's are different in differ-
cent strata.

Mahalonabis (Ref. 19) discusses in detail the statigtical planning
involved in large-seale samplo surveys taking into account both the cost
and variance functions for obtaining optif_ﬁum solutions. A compre
hensive and eritical review of recent statistical developments in sampling
and sampling surveys has becn made by Yatos (Ref. 28).

Tyrus or Enror v INVESTIGATION BY SaMpLp
Statistical data are the raw material of judgments, comparisons, and
truth. The highly condensed form to which the original data are usually

{$.04)
Q!
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reduced by processes of statistical reduetion gives to the finul results &
display of exactness that is not necessarily inirinsic. In viewing the
firal product, one should not forget the original material from which it
came. In order to evaluate the findings from an Investigution, much
information is necessary as to the ways in which the original data were
collected, the conditions surrounding them, and the kinds of errors to
which they are susceptible. We wish to consider here the types of
errors which are present in every study by sample.

Random Sampling Errors. First, thére are the random sampling
errors or sampling fluctuations dealt with in the theory of probability
and in the theory of sampling distributions. They are the outcome of*the
random sampling process, and sampling theory ensbles us to tshimate
them when we know their form of distribution. Randorg Ysampling
crrors have the advantageous property that they can b?w}ontrolled by
regulating the design and size of the sample. We haye tonsiderable
theoretical and experimental knowledge of this typeNol error.  Often,
however, particularly in sampling survey studiés,\this is the smallest
error in the collected data. PN

ASystematic Errors. Apart from sampling ‘luctuations, errors also
oviginate from the umrelishility of humanvobservers, either in diveet
observation or in other forms of measysetient. Errors of measurement
are usually much greator in biological“psychological, economic, or socil
investigations than in the physicaldsciences. Insofar as observational
errors originate unconsciously,, th’e}? may more or less follow the normal
distribution of errors so that Qositive and negative deviations would tend
to cancel increasingly agghd number of observations increase. It is a
mistake, however, to relyupon these errors’ canceling one another, They
may often possess npt\obly a random element buf also a bias, A special
study needs to be\farried out cither by repeating the ohservalions or
measurements byythe same observer or by more than one ohserver or by
gome other ’%pe of control and to comparc the results.  In making some
observations, “we are at times prone to dismiss as unesscntial conditions
about }ﬂiiéh we think we know more or less. At times therc may be
Justiffedtion for this attitude. It is good practice, however, to test the
possibﬂit.y of some circumstance as a cause by arranging the observations
with respect to the circumstance. If the assumed cause is real, it is
found that the errors of the observations display a regularity not found
in chance errors. Wrong assumptions concerning the operation of some
circumstance may bring aboutf similar findings in ecaleulations dealing
with the results of observations. FErrors of this type are ealled systematic
errors,

Miscellaneous Tnaccuracies. Contrasting sharply with random obser-
vational errors and sampling errors, inaccuracies may arise in a number of
ways. The worst of these originate from such practices as false entries
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or entries by pure guess, deliberate violations of directions, or sirailay
gross negligence.  Other milder forms of inaccuracies, but novertheless of
substantial significance, need to be considered. Variations in kind and
degree occur, dependent on problem, field, and racthod, :

In making a house-to-house survey, it is obvious that much depends
on the resourcefulness, skill, and reliability of the investigators. The
kind of information obtained by asking questions on subjects that are
poorly defined, or on matters of opinion, depends considerably on the
form of questions asked. Sometimes the result of the neiry s condi-
tioned by the investigation itself, as, for instance, when the per&on inter-
viewed may not have heard or thought of the subject beforg,

Much use of the questionnaire iz made in collecting infération from
people who are not interested in statistics, and are offen unwilling or
unable to provide the information sought. People &%y greatly in the
trustworthiness of their returns, which arc likely toereatonably aceurate
only if the questions arc few, well formulated, 3d casy Lo answer,

In complicated and difficult investigati g trained and experienced
workers are necessary if the information, é;‘hécted is to be relied upon.
For instance, special training and very co}nplete directions as to how the
forms arc to be filled in are given to &ghsus cnumerators.

Changed Conditions. Statisticstextending over long periods are likely
to be influenced by changes that may have taken place, particularly by
new knowledge that may hayé« altered the basis of classification or the
ordering of things into elasses. Improved systems of coverage and
enumeration may rendet\difficult comparisons of census data collected
In different decaded QUniformit}* and precision in classifying can be
achicved only if very ‘complete and explicit definitions are given. Con-
tinuity is usuallPyery significant in recorded statistics. Tn fact, at times
tho statisticia® ay prefer an existing practice, 50 as to ensure continuity
of recordsyt6/improved procedures. At any rate, if changes need to be
made, p%will insist on the collection of two sets of data, at least for some
time:-e%'pnc under the old plan, the other under the new, so that continuity
gl@.?\"tie preserved,

) This need for uniform conditions might be illustrated if an attempt
were made 1o interpret the differences between the health statis of men
eligible for Army service in 1917 and in 1941,  Such diffcultics as the
following would be likely to make 4Ny rigorous comparisons impossible:
(1) the age groups are not identical, (2) the criteria for rejecliop are nob
the same, (3) changes in medieal knowledge since 1917 have made pos-
sible the development of greatly improved techniques for identifying
physical disahilities.

"The valid interpretation of fina] statistical results requires a knowledge
of the conditions surrounding the events rocorded at the place and time
of observation. Tor instance, there are many limitations on the use of
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physical-examination findings of selectees in World War II for drawing
inferences concerning the general health status or the inecidence of minor
defeets among the population (Ref. 14).  The examinees at any induction
station comprised a partly selected and widely variable sample of the
male population at a specific time and place. The composition of the
sclectees chosen for examination was conditioned by (1) prevailing Selec-
tive Service policies with respect to deferments for dependency, (2)
practices of the Armed Forces in regard to the acceptance of special
groups, (3} the exteni of differential sereening of local boards, and (4)
the number of men previously rejected who were sent up for re-exar{l'ma,-
tion. The comparizon, for example, of those individuals whQ\ were
rejected during the prewar period of Selective Service with thegduejected
at various periods during the war would require careful intevpfetation.
The high rejection rates of the former do not necessarily-imply a low
level of national health. o\

Differing Types of Convass. Deming (Ref, 6)‘,§nhmerated and dis-
cussed 13 diffcrent factors that affect the usefuluess of survey studies.
Thiz comprehensive and informative discussion includes additional
types of errors or additional properties of'é&i'rors not hitherto discussed.
Only briel consideration can be given to\these. Information is needed
with respect to differences in results.obtained from different kinds and
degrees of canvass, such as ma.il,’t-eiéphone, telegraphs, and interviews:
also from dillerent types of questibniaires. Different results are obtained
by the different sponsoring dpencies under whose auspices the survey
study is carried out. Forféshample, studics on income and work status
yvield different results Whéz:n conducted by relief organizations than when
conducted by a gowernment agency. Because of this bias, government
and private organiza:tions have ab times contracted with other agencies
for the collection6f data. Cohen (Ref. 2) reports an instance where in
China onc (:;an?;ds, taken for poll-tax and military purposes, showed a
populatio bf’Q‘S)O{}O,DUU. Another census over the same territory, taken
this timelfor famine relief, returned a population of 105,000,000,

(;‘t@riﬁres tn Population. Therc may be changes in'the populstion in
thtNinterval hetween the time of colleetion of data and their processing,
A saimple may be more reliable than complete returns becausc of the
shorter period required for collecling and processing. Because process-
ing the data must commence at a certain date, replies received after this
deadline are not included. The late reports may be biased. A sample
study of these belated reports may at limes determine whetlher bias is
present. The comparison of two or more samples of the same sampling
dosign or of subsamples within the main sample does not detect ‘system-
atie orror’’ inherent in the methods. If two zamples agree it may ndi-
eate not that they are devoid of bias but that their biases are
similar,
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Unrepresentative Dale. Bias can ocewr from an unrepresentative
choice of a date for a survey or a period to be covered. Tor instance, a
passenger-traffic survey would not be representative i taken on or neay
a holiday date, nor would a schoal survey taken, say, ithe {irst week in
June. Comparison of retail sales made in April, 1938, with those in
April, 1937, gave spurious results, since the Faster holiday in 1987 ecame
at the end of March, whereas in 1938 Kaster oceurred in fhe middle of
April (Ref, 2).

In Processing. Processing errors may result from differencos among
workers in interpreting the wording of instruetions, in editing wnd in

BN, -

field work, Machine and tally crrors need to be checked. A

"N
PLANNING THE INVESTIGATION N

It should be noted that even if a 100 per ccg}t:, gample were taken
there would still remain errors of certain kinds-gfiymerated here, such as
hias of nonresponse (omissions), errors of respehise, late reports, orrors
originating in the tabulation plans, bias {rém“unrepresentative dates or
periods, changes taking place in the popula)ibn before tabulations become
available, and errors in interpretation}f Turthermore, even if there is
100 per cent coverage, this is still asample since af any other given time
& new sample needs to be taken, v

In the planning of an inyje%i-fgation by sample the rescarch worker
attempts fo make the bestopossible effort to conirol the errors to which
hiz study is suscept-ible: ~The distribution of his offort should be deter-
mined so that the gre ost possible information will be obtained with the
funds available. lr} act, preliminary consideration of all the crrors
to which the projepted study is liable largely determines whether or not
the im"efﬂ-ig&tiifp\shuuld be carried out.  Once a decision to proceed has
been taken,’ the reduction m error will be dependent upon the wise
distribut@y of funds such that the more significant sources of error will
reccixic':;the most attention. Bias, consistency, and efficicncy are depend-
ent-pon the system of sampling and estimation function used. The
thasretical distinetion between types of errors to be expecied is clear.
SEmpling error and observational error of the random type are capable of
statistical control. The amount of sampling error to be expected can be
detormined for each particulsr type of sampling design and size of sample-
If the amount of error that can be tolerated is kn own, then it is an unwise
use of resources to take g largor sample than ig necessary.

In'accurate instruments, the fallibility of human observers, defective
technigues, biased methods of selocting data, and other such sources of
systematic variation give errops which do not come within the scope
of the classical theory of orrors, These types of errors, therefore, need to
be cared for largely by knowledge of and control of their sources. System-

atic errors in the data may be larger than errors dus to sampling.
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Except for the random factors that might balance out, further increase
in size of the sample docs not inercase the accuraey by eliminating
systematic crrors.  Nor would they disappear if complete enumeration
was resorted to.

It i3 an cssential part of the sampling design to provide statistical
controls for defecting and guarding against systematic Lypes of errors.
One way of doing this, for instance, in & sample survey is to collect two
or more inferpenelrating subsamples, which may be independent or
partially linked together (Ref. 19). Such a simple control may not
always suflico. Tt may be advisable, thercfore, to arrange for the. sftvey
of the same sample, wholly or in part by two or more different xw‘orkerfs
Just which gources of error are to receive the most attention W {il-depend
upon their importance in relation o the accuracy with w hmh the study
must be carried out in order to produce useful resulisSwith the funds

available. This is the matter of the particular prc\»hlem Knowledge
of the actual conditions and the types of systemaideyvariation Jikely to
arise in them, and how they may be eliminated or spduced when necessary,
ig basie. I

The margin of error of the final estlm@te that can be tolerated if
the conclusions drawn are to merit coffidénce must be considered in
light of all kinds of errors to which the data are suseeptible. The lack
of aceuracy and reliability in the data tannot, of course, be overcome hy
the subsequent statistical analysm that is apphod Thus, the task is first
to secure data that are sufﬁcacnt]y precise for the purpose in hand and
then to apply methods of analyas that make the best possible use of the
information they LOI’lt&Kl\

ProérpUuRke 1N RaANDOM SAMPLING

In random ang 'J\n'representa.tiv{: sampling, a fundamental assumption
is that the sariple is random. TUpon the fulfillment of this assumptiion
rests the X»ﬁ{idi"ty of the application of most of the statistical analysis.
The objective measurement of errors of estimation and the determination
of thedienificance of the sample results are dependent on the hypothesis
of ghe fandomness of the sampling errors. I is, therefore, of interest
and iﬁuportance to note what solution, if any, the statistician formulates
0 that he can proceed with confidence in his analysis.

The information as to whether 2 sample is random is not available
through examination of the properties of the sample itsclf. This short-
coming iz illustrated by some of the hands which are obtained from deal-
ing at random from a pack of cards, for instance, a hand containing
13 diamonds. The criterion, therefore, of a random sample has to be
sought elsewhere, namely, in the process or meihod of gelection, If a
random method of selection can be developed, then & random sample can
be simply defined as a sample which has been obtained by a random
methaod,
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The concept of a population comprised of aggregales of ihings or
repeated events or phenomena is fundamental, since no collection of
things can be thought of as random unless it in turn can he regurded asg
one of a get of such aggregates. Here it is assumed that a random sct of
objects means that the set was obtained by a random method. M is
recalled that random sampling at the outset is designed to give every
possible sample of given size an equal chance of being the actuul sample,
A reguisite of a random sampling method is that it should be independent
of the characteristies of the population under investigation.  Since this
deflnition of random selection refers to the specific chavacter u neldrstudy,
it is cvident that the random method in itsclf can not boathought of
separately from the population the individuals of which arg 'ty chosen.
A method might be random for onc population and not fowhnoiher. In
fact, a method random for one characteristic of a populition might not
be so for another. Kendall (Ref. 11} illustrates this{point by citing the
problem of sampling in a planned town by talipg cvery tenth house.
This procedure might give a random sample, \But if every tenth house
should be a corner house, the sample might or might not be random,
depending on the character that was heifig studied. It would probably
preserve its randommess if, for inst-a.r!(:é; thoe study was to determine the
proportion of inhabitants with blugteves, but probably would losc it if
phc investigation was concerngd :“-"ith estimating the distribution of
INCOImMes. ™R

No objective means is affailable for completely satisfying the require-
ment of independence between method of sampling and eharactoeristic.
Such means would réguire complete information about the populatien,
which, if availableNwould of course render investigailon unnecossary.
Confidence in théfulfillment of independence must resi more or less in
the actual stats.of our knowledge at the time on an & priori basis.

In practied it is often cssential to choose a sample random in relation
to all propeities of the population. This might appear to be an impos-
sgible ms,k, since, as has been pointed out, it is in the very nafure of the
p;'ghl‘erﬁ to sample the population according to at least one of ity char-
fcteristics.  This seeming predicament was removed by superimposing a
new characteristic on the universe and sampling in accordance with it
The most useful characteristic thas can be superimposed on an existent
universe is that of ordingl number. Tf the universe can he cnumerated,
then the problem of random sampling becomes fundamentally that of
discovering a series of random numbers,

The customary way is to nureher the universe in any practical man-
ner, whether or not relatod to its propertics, and then to look for a set of
numbers 50 that they constitute a random aggregate from the possible
ordinal numbers of the universe. Thus, tather than the requircment of
determining in each case whether a sampling method is independent of the
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characteoristies of 1the population, it became necezzary only to construet
a sct of digits capable of giving a random sample of any size from any
finile set of integers.  Under such conditions it may be expected that the
arrangement of digits in the sampling numbers will not be associated
with the eharacteristics of the universe, Such was the principle upon
whieh sets of “‘random sampling numbers” have heen compiled.
Kendall (Ref. 11) specifies ccrtain requivements, other than that of
having been chosen at random, that a set of random sampling numbers
musl satisfy if it ean be used for random sampling. Each digit in a set
of N random sampling numbers is expected to oceur in N/10 cagegrand
each pair of digits to oceur an equal number of times. He speaks of a
set with such properties as locally random and gives fourgnelessary
tosts, although. they are not sufficient, to determine the exist’e:ﬁce of local
randomnoess: N
(1) The frequency fest. Each digit should occm:\r;n approximately
cqual number of times.
(2) The scrial test. There should be no :‘g@c’{ency for a digit to be
followed by any other digit. o\
(3) The poker test,  There will be cethain expectations to be satistied
for digits to be arranged in bldgks of, say, five, four, three, and
%0 on. N
(4) The gap test.  There are: dertain expectations to be salisfied with
respect to the gaps.‘eccﬁrring between the same digits in the
geries, e \\
,\'\ - . ]
There arc two séks of random sampling numbers in common use,
- Tippett’s (Ref. 2'?”)\1'5&1?1 Fisher and Yatex's (Ref. 7). A third set has been
published by ]f\éndall and Smith (Ref. 12). Tippett compiled his set
by drawing #1600 digits at random from census reports and by combin-
ing in fl-’s\%}"give 10,400 four-figured numbers. They have been sub-
jected toda number of inquiries in which they have met the criteria of
randdimness used. Fisher and Yates's set of random numbers was
edngiiucted from the filteenth and nineteenth digits of A. J. Thompson’s
20-figure logarithmic table. The authors present tests of its randomness.
Each of the compilations Js accompanied by a number of illustrations
of it use. 1f. for instance, a random sample is wanted from a list or
rogter of nam{\:s, the procedure would be as follows: First each sampling
unit is numbered in any way, systematic or otherwise. The tables arc
then opened at random and starting at any point and procceding in any
direetion, such as up or down the columns, along the rows, or by some
other predetermined plan, a sufficient pumber of pairs of digits or other
combinations are taken to make up the predetermined size of the sample.
Whenever the same number oceurs twice or more it is simply ignored.
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All numbers which execed the total number of sampling unitz are slso
ignored.

Other methods of drawing random samples are used, such as using
coins, dice, roulette wheels, or cards. Greal carc must be taken, how-
ever, to avold bias in using such mechanical meuns.  The human being
hasg been shown 1o be egpecially incompetent to make a random selection,
The problem of sclecting a random sample has been greatly simplified
by the preparation of tables of random sampling numhberz., When the
rules of the game are scrupulously observed, their use likely gives the
best guarantee now available of obtaining a random sample. \

A CoMPARATIVE EXPERIMENT IN SAMPLING METIADS

In order to illustrate some of the principles Underly:mg’sampling
procedures that have been dizcussed in this chapter, apﬂ:e.xperiment was
carried out. Its findings are presented hercwith., 2%

We have a {initc population consisting of 24,895"£§éh school graduates
whose ages were given as of the nearvest birthdayadihe time of graduation.
They have been classified according to sex apgddocation of high school, as
given in Table 45. The means and standard”deviations in years for the
total population and for each of the foursubelasses are aleo recorded in
Table 45, o\

T&ﬁm- 45
Acns or 1933-1944 Hierm-BcuooL GRADUATEs 1v Pumrtic Scroons or MINNESOTA
CLARSIFIED AGCORDLINE 7o Sex axp Bew or Localiry™

State | \g"bhtsrde 30_1'2;:;85 of first 3 cities of first class
Age agan. [ -
wheltw. l
:‘:\ ’ Boys Girls ' Tioys Glirls
e\ o
x> — I
15 \\ 84 26 13 6 9
16 M 1,585 457 812 115 {201
AN 8,720 2,486 3,870 930 1,443
w13 12,148 3,269 4,726 1,667 2,486
WE 1,562 352 837 239 334
20 216 56 73 16 41
e 7L 29 19 22 8
_ Total | 24,395 6,668 | 10,180 3,025 4522
_ Mean 17.59 | 1756 17,53 | 17.74 17 .68
S.D. \ 7799 7783 7903 | 7848, 7352
: ' |

191: State of Minnesola, Departmient of Lducation, Statistical Division, Deccmber,

We shall assume that we wish to estimate the age of high-school
graduates by taking a sample of 1,000 from the total population of
24.395. We shall use three. different methods of selecting the sample by
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assuming that each age group is (1) evenly distributed among the sub-
classes, (2) stratified proportionatcly to the sizes of subclasseé, and (3)
gtratified proportionately to the products of the sizes and standard
deviations of the subclasscs.

Iirst we shall describe the method of drawing the sample of 1,000
graduates from this population as a whole.

The first step was to assign a five-place numhber to each clement of
the population {see Table 46).

TABLE 46

ASBIGNMENT OF RaNnoy SaypLing NUMBERS N
TO THE 24,380 GRADTATES oF TABLE 45

Age Numbers O\

153 00,001-00,084 A\

16 00,085-01,669 O

17 0,670-10,398 AN

18 10,399-22,546 A 3

19 22,547-24,108 e,

20 24,100-24,324 N

21 24,325-24,305

The sccond step was to read TFisher and, ‘?atc Table of Random
Sampling Numbers (Ref. 7}, page by pag% first horizontally and then
verticully. Ifach time five consecutl}fe"hglres wore read; they consti-
tuted a five-place number which wassthen referred to Table 46 to give
the element an age score.  Whengver a number larger than 24,395 was
cbtained. it wag discarded. Id fl;his way, we formed a sample of 1,000

as indicated in Table 47. &

xS ‘\ TAEBLE 47

A Sasres or 1000 Drawy ey Trre METHOD
\, OF Ranpox SAMrPLING NUMBERS

» D State

A/ Age as a
\4 whole

\\ 13 6;%

\ad 16 -

'."\\ 17 a8

Qe 13 486
) 19 53
) 20 1
\ 21 ]
Total.......... 1000

The final step was to stratify this sample of 1,000 according to the
three methods enumerated above.

The first method, that of stratification with no restriction, was very
simple. We simply eplit each age group into four subgroups as reported
in Table 48,

In using the second method, that of stratification proportionate
to the total nymber in the population in each of the four subclasses, we
needed first to compute the proportions of the four subclasses. Let us
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TABLI 48
STRATITICATION OF THE BaMPLE or 1000 GRADTATES witn No REesTRricTIoNs

Outside 3 cities 3 cities
of first class of first class
Age I
Boys Girls Boys Giirls
15 1.00 1.00 1.00 F00
16 15.75 15.75 15.75 5,75
17 94 50 o4 50 94, 50 g4, 30
18 121 .50 121.50 121,50 ’\‘\121,50
15 13.25 13.25 13.25 LNV 13.25
a0 2.95 2.75 2.7 (\NJ 2.75
21 1.25 1.25 1.25(‘.}"; 1.25
- 3|

— '\'
denote by N1 and N the numbers of boys and gffl\s respectively, outside
the three cities; by N and N4, the numbers Qboys and girls respectively,
inzide the three ¢ities. Then weo calculate f N

W

Ni:N2:Ng:N, = 6,668:10,‘1.8\0:3,025:4,522
_ 6,668 30,180 3,025 4,522
24305 24,305 21,305 31,305
= 2933:.4173:.1240: 1854
Tach age group was thenssplit according to this ratio. The resultant
stratification is I'G]JOI'JDEEL]?. Table 49,

\

N\ TABLE 49
STRATIFICATION OF THB,SAMPLE OF 1000 GRADUATES ACCORDING T0 TPROPORTIONATE
.\' > *NUMBERS 1IN THE Portnamion Sriars

\‘:\ Outside 3 citics - .
) of first class 8 cities of first eclass
Agd™N\ - JE—
N Boys Girls Boys Girly
’”\\ -
\_;_ — | —— N .
15 1.09 1.67 0.50 0.74
14 17.22 26.29 7.81 11.68
17 103.31 157 .74 46 .87 70.08
18 132.82 202,81 60.26 90.10
19 14 4% 2219 6.57 9.83
20 3.01 4.59 1.36 2.04
21 1.37 2.09 0.62 0.93

In using the third method, that of stratification praporiionate to the
product of the numbers and standard deviations in the four subclasses, we
also first have to compute the proportions of N s of the four subclasses.
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Let us assume that Ny, N, Ny, and N, have the same notation as
used before.  Denote by o1 and o3 the standard deviations of the ages of
boys and girls respectively, outside the three cities; by o; and o4, the
respective standard deviations inside the three cities, Then we calenlate:

.N-lﬁ'l :N20'2:N30'3:AT40'4
= 6,668(.7763):10,180(.7903) :3,025(.7848) : 4,522(.7352)
= 5,176:8,045:2,374:3,325
_ 5,176 8,045 2374 3325
~ 18,020°18,920° 18,920 18,920

= ,2736:.4252: 1255:.1757 Q.
Fach age group was then split according to this ratio. The fégnlting
stratification is reported in Table 50, N\ ¢
TABLE 350 ("}‘.

BTRATIFICATION OF THE SaMrLs 0F 1000 GrapvaTEs PROPORTIONANINTO THE PRODTICT
OF TOE MEANS AND STANDARD DEVIATIONS IN THE PoRCL{TION STRATa

Qutside § cities ). . .
of first class e \\3 cities of first class

Age ,“,\“

Boys Girls N Bays Girls
15 1.09 w70 0.50 0.70
16 17.24 _Ngb.79 7.1 11.07
17 103.42 AN 160.73 47 .44 6641
18 182,97 AN 206,65 60.0g | 85.39
19 14 5 2254 6.65 9.31
20 0\\ 4.68 1.38 1.93
21 1 37 2.13 0.63 0. 88

\

We then t s@d the goodness of fit for the three kinds of stratification
by usging t \s\% _criterion. Before doing this we needed to compute the
theoretical\vkpectations of frequencies for each age group in cach subclass
if we degw sample of 1000 exactly representative of the parent population.
TheE slculations of the theorctical expectations are reported in Table 51,

fo test of the goodness of fit of the method of randomization without
restrictions gave a value of x} = 262.2836. Referring to the x?* table
with 18 degrees of freedom, we find that P < .001. Therefore, we con-
clude that this kind of stratification is not a good fit to the theoretical
expectations.

The test of goodness of fit of the distribution of observed values from
the method of stratification according to proportionate numbers and the
theoretical distribution gave a value of x3 = 20.1521. Referring to the
x* table with 18 degrees of freedom, we find that the corvesponding
value of P > 30. Therefore, we conclude that the stratification pro-
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CALCULATIOR oF T THEORETICAL FXruoTATIONS OF FREC

TABLE 51

SAMPLING THEORY AND PRACTICE

[Criap. IX

IUENCIES FOR FacH Agg

Grour oF FAcH BUBCLASS FOR A RIEFHESENTATIVE BAMPLE oF 1000 GRADUarDs
r TPor Cent, ,
Age | (Frequency of _F _ {"Theoretical [ra-
population} 24 395 | queney: %o 1000)
15 26 .00107 1.07
16 457 .01873 w1878
17 2,486 .10191 101 91
Boys {| 18 3,269 13400 | A 13400
19 352 01443 (KN 14,43
20 56 .00230 (] 2.30
Outside a1 22 .00098 0.90
Three L
lities 15 43 L00)76 1.76
16 812 003329 33.29
i 3,870 /. 15864 158 .64
Giirls ‘ 18 4,726 .19373 193.73
T 637/ 02611 2.11
| 20 78 ¢ -00299 2.99
21 N1y 00078 0.7
15 N6 .00025 0.25
16 | w8 115 .00471 4.71
17 930 .03812 3%.12
Boys (i 180R" 1,667 .06833 68.33
UN 239 00980 9.80
20 46 .00188 1.88
Three AN 21 22 00090 0.90
ies )
Cities K| g 00037 0.37
16 201 00824 8.24
m 17 1,448 .05915 59.15
MNO\Giis ¢| 18 2,486 .10101 101.91
Y 19 334 .01369 13.49
& 20 41 .00168 1.68
%%N A 8 00033 .33
Tota 1.00000 1000.00

Partionate to subelass numbers in

Xpeetations.

Trom the test of the goodness of fi
according to the product of
sub classes, we found g x3
18 degrees of freedom, we find that the

> .30. Therefore,
the products of suh
is & good fit to the

1 24,395

18,1743,

theoretical expectations.
that the subclass standan

Hence, the ratio of N 17

this case is a good fit to the theorotical

t for the method of stratification
the numbers and standard deviations in the
Referring to the x? table with
corresponding value of .50 > P
we conclude that the stratification proportionate o
class numbers and standard deviations in this case

It is noted from Table 45

d deviations are all in the same magnitudes.
*Nowa:Niwos: Noy differs very little from the
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ratio of ¥3: V21 N3:No. We do, however, note a reduction in x? in taking
into account the subelass standard deviations.

10.

ProBLEMR

. Work out a sampling design for securing data about the number of

students enrolled in the several high-school subjects in your state.

. Design a sampling survey for obtaining data concerning promotion

policies for teachers in the elementary schools of your state.

. Secure a representative sample of schools to engage in a cooperative

experiment festing the relative eflicacy of different curricular prac-
tices in secondary schools.

. Dusign a sample survey for securing the best estimate of \student

enrollment in institutions of bhigher education in the Uni’béd States:
this information to be made available within a mnth after the
opening of the institutions in the fall,

. Set up a plan for a survey by sample of the att‘i\nde of the publie

toward Federal support of education to equalize educational oppor-
tunities. R # N

Ret up a sample of schools in your state wﬁéh can be used recurrently
for the collection of school statistick » Design the sample so that
designated portions of the schoolswre taken out each year and new
schools added so that no school jcﬁzl'i'ies an excessive burden.

- Compare 5 method of samplihfg with the method of complete survey

for a specificd cducation&l problem with respect to cost and fime
required to issue the res

- What recent de\»elchs}ncnts have taken place in the technigues of

questionnaire comjaruetwn, in procedurces in earr ving out the inter-
view, and inpsnging about maximum returns from progpective
r pspun(lent-, '?\

What m hods have heen developed to eontrol error in the processing
of f-,un'L} data?

Hm\ can developments taking place in clectrical and electronic

ét}}llpment be applied to large sample surveys?
11

12,

13,

ugpest methods based on statistical and research principles which
could be used for improving and standardizing pr ocedures for col-
lecting school statistics in your sfate.

Evaluate the sampling procedures used in Kinsey, Alfred C., Pom-
eroy, Wardell B., and Martin, Clyde E., Sezual Behavior in the
Human Male. Philadelphia: W. B. Saundem Company, 1948.
Criticize the sampling methods used in the Revision of the Stanford-
Binet Scale. Sce Marks, Eli 8., “BSampling in the Revision of the
Stunford-Binet Seale,” Psychologwal Bulletin, Vol. 44 (1947), pp.
413-431.
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14. Compare the relative efficiency of the three different sampling

methods deseribed in the text for estimating the ages of high-school
graduates by calculating the mean and standard deviation for each
method and comparing these estimates with the population values.
Calculate the sampling errors for cach method (Sce Note in Problem
15).

15. Specify methods of forming estimates and calculuting sampling

crrors for each of the following sampling methods:
{(a) Random sampling (no restrictions)

(b} Stratified sampling ~
(¢} Cluster sampling O\
(d) Sub-sampling R

{e) Stratification for two or more factors
(f) Balancing

A

# {"
Note: This problem should be postponed”ﬁnt-il the student has

studied the techniques of analysis of variahde and covariance.

v

References, ‘;\

1. Cochran, W, ., “The Use of the Anal¥sis of Varlance in Enumeration by

2.

3

Bampling,” Journal of the American Slulistical Association, Yol. 34 (1938,
pp. 482-310. AN

Cohen, Jerome B., “The Misugt of Statistics,” Journal of the American
Statustical Association, Vol. 33%1038), pp. 657-674.

Cornell, Francig G., * SamplaPlan for a Survey of Higher Iducation nroll-
ment,” Journol of Expéfimental Fducation, Vol. XV {1947

4. Cowden, Dudley T, ;‘m&n Applieation of Sequential Sampling to Testing

5.

6
7

8

/7N

10

Students,” Jour %ﬂf ‘the American Statistical Association, Vol. 41 (1046),
pp. 547-556.

Craig, A. T., ‘‘Gn)the Mathcmatios of the Representative Metliod of Sam-
pling,” Angals of Mathematical Statistics, Vol. X (1939}, pp. 26-34.

. Deming, Wi Edwards, “On Frrors in Bampling,” American Soctological

Teview, ¥01. TX (1944), pp. 359-360.

- FishetaRe A., and Yates, F., Statistical Tables for Biological, Agriculiural and

Megical Research., Edinburgh: Oliver and Boyd, Tad, 1943

. J\e:ssén, R. J., “Btatistical Investigation of a Sample Survey for Obtaining

\. .EESE)F&CE’” Towa Agrievltural Faperiment Slofron Research Bulletin 304

- Hansen, Morris ., and Hurwits, William N., “On the Theory of Sampling

from Finite Populations,” Annals of Mathematical Statistics, Vol. XTIV
(1943), pp. 833-362.

. Kendall, M. G., The Advanced Theory of Statisties, Vol. 1, London: Charles

Griffin & Company, Ltd., 1045,

11. » and Smith, B. Babington, “Randomncss and Random Sampling
i)zfl ?Jlllé?ibers,’ " Journal of the Royal Statistical Society, Vol, 101 (1938), pp-

12. , and y Tables of Random Sumpling Numbers, T'racts for Come
puters, Na. 24, London: Cambridge University Dregs, 1840,

13

- Kermack, W, 0., and MeKendrigk, A, G., “Tests for Randomness in a

Beries of Numerical Observations,” Proceedings of the Royal Society of Bdin-
burgh, Vol. LVII (1937), pp. 228-240,



Crar. 1X] SAMPLING THIIORY AND PRACTICE 209

14.

15.

16.

20.

21,
22.

23.

24,

26,

27,

28,

29.

30N

Lew, Fdward A., “Interpreting the Statistics of Medical Examination of
Belectees,” Journal of the American Statistical Association, Val. 39 (1044),
Pp- 345-356.

Lindquist, X. F., Siatisticol Analysis in Educational Research. PBoston:
Houghten Mifflin Co., 1940, pp. 21-29,

Maclhva, K. B., “ Technique of Random Bampling,” Sankhya, Vol. 4, Part 4
(1940}, pp. 532-534.

- Madow, Lillian L, “Systematic Sampling and Its Relation to Other

Sampling Designs,” Journal of the Am erican Statistical Association, Vol. 41
(1946), pp. 204-217,

- Madow, W. G., and Madow, L., “On the Theory of Bystematic Samfﬁ}ug,”

Annals of Mathematicol Statistics, Vol. XV (1944), pp. 1-24.

- Mahalanobis, P. C., “On Large-Seale Sample Surveys,” Philosofihiedi Trans-

actions of the Boyal Society (London), Scries B, BEiological Sciséhees No. 584,
Vol, CCXXXT (1944}, pp. 320-451. QAo

MeNemar, Quinn, “Sampling in Psychological Reseateh,) Psychological
Bulletin, Yol 37 (1940), pp. 831-303. ¢t

Neyman, Jerzy, “Contribution to the Theory of Sh;l\npling Human Popu-
lations,” Journal of the American Statistical 3esotiation, Vol. 33 ( 19383,
pp. 101-1146, AL

. “'On the Two Different Aspects of tﬁ:j?.epresentativc Method: The
Method of Btratified Sampling and the/Method of Purposive Selection,”
Journal of the Royal Statistical Soctety /WO 97 (1934}, pp. 558-625.

Sncdecor, George W., “Design of Bamipling Experiments in the Social
Belences,” Journal of Furm Eco::wjmiés, Vol. XXIT (1939}, pp. 846-855.

Stephan, Frederick F., “ Representative Sampling in Targe-Scale Surveys,”
Journal of the American Statileal Association, Vol. 34 (1939), pp. 343-352.

» Deming, W. Edwardg, and Hangen, Morris H., ““The Sampling Pro-
cedure of the 1940 Popalation Census,” Journal of the American Statistical
Association, Vol. 35 (1940}, pp. 615-630.

Bukhatme, P. V,, ntribution to the Theory of the Representative
Method,” Supplement to Jowrnal of the Royal Statistical Seciety, Vol, 1T
(1935), pp. 253~268.

Tippett, L. H{ C\., Tables of Random Sampling Numbers, Tracts for Computers,
Ne. 15, _Dondon: Cambridge University Press, 1027,

Yates, ,:}"A Review of Recent Statistical Developments in Sampling and
Sampling Surveys,” Jowrnal of the Royal Statistical Society, Vol. 109 (1946),
PRI 230,

Yuie, G. U., The Statistical Study of Literary Vecabulary. London: Cam-

"\ bridge University Press, 1044,

. and Kendall, M. G., Adn Introduction to the Theory of Statistics.
London: Charles Griffin & Company, Ltd., 1937, pp. 332-335.




CHAPTER X
ANALYSIS OF VARIANCE AND COVARIANCE

The analysis-of-variance technique developed by R. A. Visher and
first reported in 1923 (Ref. 7) constitutes amethod capable of analyzing the
variation to which experimental and chservational material is subject so
that an assessment of the various components of variation cun bé made.
Since its introduction, the analysis of variance has become more and
more useful to large numbers of rescarch workers in mariyfields. Fish-
er’s technique is the only efficient one go far developed by which it s
possible to differentiate the variation according to QOnuses or groups of
causes and to inferpret the significance of a“fitthmber of components
simultaneously. \

The modern advances in experiment@l'!hrd sampling degigns have
become possible through the deve]opmgn@\(}f exact tosts of significance
and of the analysis of variance. Withdut these tools, the assessment
of the components of variation traceable to the sources specified by the
experimental or sampling designegotld be a very involved and diffcult
cnterprise. Fisher (Ref. 4) gié’sb’ribes the amalysis of variance as used
in the analysis of experimental results as a simple arithmetical procedure
for arranging and preseiting the experimental results in a gingle com-
pact table. This forod of presentation shows both the structure of the
experiment illustrated® by the division of the number of degrees of free-
dom, and the relevant results arranged conveniently for the application
of the neeessary:f?ests of significance.

The Aaal’ygis of Variation. Assume that we have a measure of a
character‘(si;ic’ whose value is specified by the letter X. 'This value of X
usually}.:va-ries from onc individual to another or for repeated measure-
Ir}gr;ts},’of the same individual. Tn general, the variation i¢ due toa large
fumber of different factors or causes. Of these factors some may be
capable of identification and therefore may be called assignable causes
of variation. However, there are usually numerous other causes which
cannot be segregated beeause of our ignorance concerning them. These
are spoken of as chance causes. As we gain in knowledge, more and
more factors become assignable until the phenomenon ean be completely
explained if we can identify all the factors giving rise to the variation.
The contribution of the known and unknown factors to the quantity X
may be regarded, at least to & first approximation, as additive in character
and may be represented symbolieally thus:

X=a+bdet - 42 (10.01)
2190
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where a, b, ¢, . . . denote the respective contributions of the known
factors 4, B, €, . . . , and ¢ represents the residual or the portion of X
attributable fo chance or unknown factors. If, for instance, the factors
4, B, €, . . . can be maintained under complete control, their respective
contributions «, b, ¢, . . . will continue to be constant, whereas the
fluctuations from unit to unit in X will be entirely attributable to the
variailion in z,

In experimental work various hypotheses may be advanced with
respect to the effect of one or more factors, namely, 4, B, €, . . . , and
experimental designs arc prepared to make the best determinationtof the
presumed effects, @, 5, ¢, . . .. The measures obtained of the presumed
effects need to be tested with a view to determining their signifidance.
If the measured effects are real, that is, traceable to the origin specified
by the particular cxperimental design, the experimental résitlts would be
characterized as heferogencous in variation. If, howayér, the variation
presumably contributed by the several independent{edntributions of the
factors 4, B, C, . . . would be only of the ordér™of magnitude of the
effect assigned to the random sources of variafidm, the conclusion would
be that the presumed effects were not real 'b\lt attributable to random
causes. The wvariation in the experiméf;tél material would then be
spoken of as homogenecous. That is, imerder for variation to be strictly
homogeneous, it is purely random-*¢aused by a multiplicity of minor
independent factors, in(:apable'off:'résolution inte more clemental form
and indistingnishable one fronranother.

Hence, the fundamentalproblem in studies of variation is to be able
to differentiate the variahion and to trace each contributing factor or
group of factors to itf\source. Although an analysis of this kind is of
special significance in; experimental work, there are many situations in
tesearch work where differentiation of sources of variation in observa-
tional data js/mitessential part of the analysis. A general problem is
that of det-g,%aining whether two or more samples may be regarded as
random saﬁlples from the same homogeneous population.

Az&:&bbh’caﬁon of Analysie of Variation. We shall illustrate the main
ideds of the above discussion by presenting an example. Let us take the
dats recorded in Table 52 which represent the mental ages in months of
6 samples of 6 pupils each, each randomly chosen from the same grade in
6 different urban schools.  Suppose that the data are required to answer
the question: Is there evidence that the mental ages of the pupils are the
same for the same grade in the 6 schools?

The variability in the mental ages of the pupils from the same school
is 50 considerable that it would be hard to reach a conclusion on the peint
at issue from a mcre inspection of the data in the table. Diagram 5
brings out the situation more clearly; but even after examining it can we
say that the differences in the means are sigrificant? I is at this point
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TABILLE 52
MENTAL Acxs oF 6 Raxpon Saypres or 6 Purins Lacir rroy 6 DirrireNT Scitoows

Llental ages in schools
Individual -—
i 2 3 4 3 3]
1 158 1568 160 159 164 153
2 157 135 158 155 163 LS
3 153 154 136 148 162 115 8
4 151 153 1535 147 160 114
5 44 151 150 WG 15b @k
6 143 149 145 145 e Ok
Mean | 151 158 154 130 15W8 ¢ 145

Crand menn = 152 ",;\""
that statistical theory can give assistance byndotermining how much
eonsideration should be given to the appargabudiffercnees in means, which
are hard to discern because of the residuglluctuation, z, due to chance
causes. Specifically, the question istiWhat is the probubility that the
observed differences in the mean_yaltes of the 6 schools might bave
arisen simply through random sgtirpling errors?

M.A. R
165 N
e b d
i RS *
160+ O . é
1 : \ \x- - : Ky =¥y
1Is54 L L)8™ ™ . .
1@ 8 105x _
152';@‘ . LA . * | X,Grand Mean
l§31\ . . 0
\w" » -
p [
X {vas . . o
oY 1° * o Individual M.A.
4\ Y4 -
\3 140 O Sampie Mean
1354+ 4 | , .

| *
2 3 a4 5 g
Sample Number

Figure 5. The components of variation in the mental ages of 36 pupils.

Statistical means enable ug to make the caleulation of the proba,bili’ﬂy
value. ?aince the form of the statistical test to be deseribead later depends
toa C(J‘nmdemb]e extent on the nature of the random variation represente
by 2, it may be well to point out here the following assumptions: the

random clements, in successive observations, are independent of eadh
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other and of the values of the assignable factors, if these exist; and they
are normally distributed about zero with equal standard deviation.

We shall briefly describe the model the statistician sets up for the
deseription of the situation discussed here, If the X of Equation (10.01)
represents the mental age of a single individual, then @ on the right-hand
side may be considered as a gencral average or mean of the individuals
in all the samples, and b as 2 vontribution—positive or negative—assoei-
ated with a particular sample. If there are changes in mental age from
sample to sample which affect X, then the values of b, namely, by, by,
. - -, bs for the 6 samples, will differ; if there are no such changes; then

b}_:bg= e =be=0 ,\(:LD()?)

The random or residual variations, 2, among the mental ,age;: of indi-
viduals from the same school obscure the real situation,abr.}ut the true
value as estimated from the sample. Henee, it is not p@s{lhle to take the
dilference between the observed sample mean and the grand mean as
equal to b (t =1, 2, - -+, 6). Therefore, it kefomes necessary to
answer the question: Taking into account the pbﬂ}ﬂred variation among
mental ages of individuals in the same schopl\‘séinple, what is the prob-
ability that the 6 obtained sample meang™would differ so much among
themselves beeause of random sampling,fluctuations if, in fact, Equation
(10.02) were true? o

The method used by the statistiglin to solve this problem is outlined
below. "~
Let X be the mental agegcore of the ith individual in the tth sample;
t=1,2 .-+ 6:alsoi —'\i;.z - - -, 6. X, isthe mean of the observa-
tions in the #th sample angi X is the grand mean of the 36 obscrvations.
As illustrated for onedtdividual from the third sample in Diagram 5, the
mental age score of(Bh® sth individual in the tth sample may be considered
as the sum of t}qé}'bomponents. Thus:

\\ Xo=X4+ (X -+ X.—- X (10.03)

For E}(aiﬁple} the mental-age score (164) of the first individual in the
sam Téffdm the fifth school is equal to 152 + (159 — 152) + (164 — 159).
Referting to Lquation (10.01), X may be considered as an estimate of a;
(X, - X) as an estimate of by and (X — X)) of the residual variation 2.
These are estimates because we have observations only from a random
samplo from each of the schools. B _

The significance of the difference X, — X (¢ = 1,2, - - - | 6) or the
acceptance of the hypothesis represented by Fquation (10.02) is based
on the magnitude of the components X, — X compared with X, — X..
A procise statistical test of the significance involves the use of the follow-

ing identity:
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(Xzi - }:’)2 = [(Xxi - XI) + (X: - X)]"’
) )

=Y Xa— X1 ) Y (X~ R

o (10.04)
+ 2 (Ar;" _ x\',)(}\r, —_— _\—}
)
= & -+ Y Y (X — X
22 ) |
since the product term will vanish beeause S‘ (Xg— X =0, A
A ¢

Before the magnitude of the two components can be cofipdred, they
must be divided by the quantities known as the numbeSof degrees of
freedom, which are r and N — ¢, respectively, where, zj’;isg"ihc number of
relations used to define the hypothesis, that is, 5 inyblis probler. There
are § independent values; therefore, ¢ = 6. If i.f)e"’hypothesis tested is
true, then 5 relations hold among the 6 pal‘a'mét-crs, namely, b =0,
by =0,b; =0,b; = 0,b; =0. Thus, r S9N — ¢ =36 — 6 =30

The critcrion is R
> o S5
F = (10.05)
QX — X
13
o\ N —yq
% Y (%, - %)
ne 5
A\ T
O Rl [ — (10.06)
~0 Y (X — X
N/ 43
"\’\ ‘Ii\‘?' — q

'U:sii.lg'the Tables of F or 2, respectively, we obtain the 5 per cent and 1 per
“cent levels of significance against which the obtained value of F or 7 18
hecked.
The numerical solution for the example is carried out as follows:
First, it is convenient, to reduce the valucs in Table 52 by subtracting
150 from each value obtaining the £ ollowing:

Individusl 1 3 3 1 = g E
R 8 6 10 3 14 3
2 7 5 8 5 13 — 2
3 3 4 8 —2 12 — 3
4 1 3 5 —3 10 —§
5 —8 1 0 —4 4 — 8
6 —7 -1 -4 5 1 A
Total 6 18 24 9 51 —80 | T
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We then caleulate the “within schools” sum of squares, that is, the
sum of the squares of the deviations of the mental ages of the individuals
in a school (sample) about their school means, as follows:

DI

8+ 72+ 32 4 -« -+ [—14])

62 + 182 + 242 4 0% 4 54> + (—30)2)
6
= 1638 — 792

_— 4;
846 QY

We next calculate the “between schools” sum of squares, that\is, the
sum of squares of deviations of the school means about the grosncf AT,

as follows: M
_ _ 2 182 242 02 542 _r\ 2 2
G ) 36
b \
i Zgg — 144 Y \\':
= U= "

The total sum of squares, that is, the éum’ of squares of the deviations
of the 36 individua! mental ages from’ Sheir grand mean, 1% obtained as

follows; ',j.:;
Z 2 (Xa= B = @ L S D
L G38 — 144
= 1494

The respectivé g,l;ms of squares with the appropriate number of degrees
of freedom sape (ecorded in the custormary analysis-of-variance table,

N/

O TABLE 33
ANALYEI3. 8% Variancs or THE MeENTAL Aces of Tnk 36 Purins 1§ 6 DirrErbnt
Nt ScHooLs
\’“\ \ w4
f Mea .
Source of variation d.f, E;LI:;; sqlf;;; F ITypothesis
Betwecn achools h 648 129.6 4.6 Rejected
‘_‘\E}ﬂ schools 30 846 28.2
Total 35 1494

Table 53. The values under the column heading “mean square” are
obtained by dividing the sum of squares in each row by the corresponding
number of degrees. By applying Formula (10.05}, we obtain as the
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observed value of the criterion, Fy:

129.6
Fo= 953
= 4.6

We then enter the F-table with n. =5, n. = 30, and find that
F.a1 = 3.7, Since our obtained value, 4.6, is greater than 3.7, we may
conclude that there is a significant difference between the mean mental
ages of the gchools. We may also say that the null hypothesis under
test, that is, the hypothesis stated in Equation (10.02), is 1'(’.‘](3(:1;9\(1‘

Process of the Analysis of Variance. As has been observed in the
example above, the actual process in the analysis of variap€oéonsists in
breaking up the total sum of squares of deviations of g observations
from the grand mesn into independent portions asdigned to certain
factors. The structure of these component parts) fusuull_\_' determined
by the design of experiment, is specified by the number of degrees of
freedom or by the number of independent couipiirisons, which, like the
corresponding sums of squares, are additige/in character. Therefore,
the method is equally valid for small and\irge samples.

Analysis of Covariance. Anothgiwseful extension of the general
analysis-of-variance method is the Analysis of covariance, also developed
by Fisher. In this analysis, the{brocess consists in breaking doswn the
gumn of products of deviations :@’f'any two variates from (heir means and
assigning the respective components to specified sources. One of the
most useful applications{of the covariance method is in sorting out the
covariance elfects, | arbicularly in experimentation. This operation
makes it possibla tovincrease the precision of an experiment by the
elimination of causes of variation in some cases not controlled or con-
trollable by thefexperimental design.

Superigr}ﬁsi' of Analysis of Variance to the Traditional Biometric
Me.thm.is&“While in cxperimentation the special value of the analysis of
varlauee is manifest, it has many other applications in dealing with
ohz»sgn"atmnal material.  The efficiency of its use in testing if a group of
‘samples may be regarded ag having come from the same homogeneous
p_opula,tion is clearly illustrated by comparison with the traditionsl
biometric method used for such purposes. In the latter it iz customary
to caleulate independently a standard error for each of the possible
compatisons of the means of several samples. The labor involved in
this procedure is not its only objection, The chief objection is that in
many cases the obtained estimates of standard errors may not differ
beyond merely sampling errors. Tn such cases it may be concluded
that the larger part of the observed differences is attributable to random
sampling errors, and that a more accurate as well as much less compli-
cated analysis would result by pooling the sums of squares of deviations
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from the different means and by applying the eombined estimate in the
test of significance. This change introduced by the analyvsis-of-variance
mcthod serves to provide an exact tost of the null hypothesis and hence is
used habitually by the modern research worker. Thus the method makes
use of the relevant information contained in the data, since it takes into
aceount the sampling distribution of statistics of the same kind.

The foregoing discussion serves to give a general account of the main
ideas underlying the analysis of variation. Accompanied by the illustra-
tive example, this diseussion should be suitable as an introduction for the
reader to the application of the analysis of variance to the simpler prob-
lems. Probably, however, the research worker will profit from a{here
complete and rigorous study of the statistical principles under ly;ng such
a powcerful tool as the analysis of variance and covarisnce. S FJis fre-
quently observed that the formulation of a problem in s,ta.mtlcal terms,
which requires an orderly arrangement of the known resul€s™and an awarc-
negs of the assumptions and how they may be tosted, @sists in making
clear the essential features of a problem hitherto 2t clearly visualized.

Before s number of practical applications L{the method of analysis
of variance and covariance are demonstratetl,” the next section will
present the systematic formulation and sqlu}ion of the problems under-
lying these methods. This section may b6 omitted by the reader not
interested in the mathematical dcx-fqlppmcnts. Ic ean proceed directly
to the practical problems in Chapten XI.

MATHEMATICAL FOUNDATIONS OF ANALYSIS OF VARIANCE AND

{NCOVARIANCE

Mathematical Rati tlon. 1. Buppose we have a normal distribu-
tlon with mesn p and standard deviation & It iz well known that if
we piek independently all the possible samples of size n from this popula-
tion and dcnot'e\th'e random effects for cach sample by

(1.01) § a=Y —plt=1-,n

then the "r;m'm value of 2 will be normally disiributed with mean 0 and
standéidd deviation o/+/n. 8o we may define, in this case, the maximum
llkehhood estimate of the variance, ¢2, of the population as

(L.02) o? = no?,

where ¢%, is the variance of sampling means of the random effects.

The analysis-of-variance mcthod consists in the breaking up of the
total variance into independent parts which can produce independently
the maximum-likelihood cstimates of ¢2 due to the random effects alone.
For instance, if we have p groups which are chosen by a certain eriterion,
then we immediately know in advance that these groups are more or less
heterogeneous with respect to their corresponding means. However, we
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pretend to assume that they are randomly chosen from the whole populy-
tion in presenting the mathematical formulation as follows:

(1.03) 2y = Yo — 4 — a (s=1, - ,p;t=1,--+ n)

where 2z, is the random effect; ¥,, is an observation of the ith individual
in the sth group; p is the population mean; and «, is the deviation from
the population mean for the sth group. By the muximum-likelihood
method we can easily get two independent estimates of of from our
sample;

1 - ;
3 —_ 2 N\
{1.04) ol IO Z E (Ve — Yo
s \:\
g . _ B EANN TP 'S\
(1.05) a’ o —1 E (Y, —Y) A
2 ¥, ) ZY\
where Y, =2 e L= ltm .
N

By using Fisher’s z-test or the variancé\gdtio F, we ecan immediately
determine whether or not these two vaarices are of the same magnitude.

Ordinarily, we are interested onlg il knowing if these groups have the
same means. 3o we often make the*test on the basis of a3, which 1s called
the variance of “within.” However, the result of significance of the
variance of, which is called“the varience of “befween,” implies three
alternative explanations. { Ubese groups have

L)

(1) Different meéuis and different variabilities.
{2) The same fean and different variabilities.
(3) Differqntf\means and the same variability.

Therefore,:'if.}fe wish o rule out the first two ecxplanations, we have to
test thq.@pothesis ¢ = o for these groups. This may be done by using
the Lyicriterion.!
& The same mathematical approach can be applied to the problems of
gre than one classification. In this case, we have independent estimates
of o* due fo the interactions in addition to those due to the main factors.”
From the above, we wish to present assumptions which should be
fulfilled in the analysis of variance:3
(1} The population distribution should be normal. 'Thig assumption,
however, is not especially important. Fden and Yates (Ref. 2) showed

! For the method of using the L.-criterion, see page 82.
XIIziFOI & detailed consideration of these interactions, see Refs. 13 and 14 of Chapter

# For assumptions underlying the analysis of variance, see Rtef. 8; for a discussion
of the consequences when any assumption 1s not satisfied, sce Hef. 1.
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that even with a population departing considerably from normality, the
effectiveness of the z-distribution still held, The normality and inde-
pendence of the random elements in successive observations has been
pointed out on page 212,

(2) All groups of a certain criterion or of the comhination of more
than one criterion should be randomly chosen from the subpopulation
having the same criterion or having the same combination of more than
one criterion. For instance, if we wish to select two groups in a school
population, one of the third grade and the other of the fourth grade, we
must choose randomly from the respective subpopulations. This
assumption is the keystone of the analysis-of-variance technique. “\Fail-
ure to fulfill this assumption gives hiased results. O\

(3} The subgroups under investigation should have the sanre var1ab1]~
ity. Wae should test this assumption before we run the anal\ s1s of vari-
ance. Otherwise, a false interpretation of the results may: follow.

Maximum-Likelihood Solution of Analysm-of—VmMce Problems.
With One Classification. 2. Before we develop a general solution of the
problems with any number of clagsifications, we s{art with the derivation
of the solution for the problems with only anitlassification. The fre-
quencics in different subclasses will alwaysBedassumed to be equal.  We
denote by Y, the score obtalned by the {thahdividual in the sth subelass.
The basic assumption in the analysm QT“ variance is that we may wrile

(2.01) Y -—..'.U—I"A + 2

whore s = 1, -« - | p; £ = 1% N, , #; p denotes the number of sub~
classes; n denotes the numbes ef individuals in cach subclass; M is defined
as the general mean; A, \g\fht, deviation due to the sth subelasy; and 2,

represents the randomdellect for the #th individual in the sth Subclass
To minimize the Val{ance of z.; by uging the maximum-likelihood method,

we first write \

2.02 O =SV, - M-4)2+ 2V 4,
o P
where

(2 O@ 3 EA,, = 0

which is a restriction imposed on (2.01}; and A is an undetermined multi-
plier of Lagrange. Differentiating x? partially with respect to ¥ a.nd A,
sefting the resulting equations equal to zero, and solving, we obtain

(2.04) M= z Z w =Y. (N = pn)

ZY“—J’I—%zya"_Y-_%

¢

(2.05) A, =

2l
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From (2.03) and (2.05), we obtain

o s A
(2.06) 24322}”_:{)}' %—0
which reduces to

(2.07) A =0

By the method of elimination, we have

(2.08) =) ) Fu— V)= Y4y n) ¥

The hypothesis we wish to test is

4

Oy
(2.09) Hoid, =0 o\ “

that is, the hypothesizs that there ig no significant (I'kﬁ'é);ence befween
thesc subclasses. Assuming that I7, is true, we havu'ﬁmn {2.02),

(2.10) Xt = EE (Yo — M)
st .\\.;

Minimizing x* with respect to M , we oblaid ¢

(2.11) =707

Substituting this value into Equa,ﬁi‘é;ﬁ (2.10), we obtain the relative
minimum value x?: N

212 2 = Yst-—-_“ﬂ—_—v S NVE . T o
( ) x”'n EZ( ~ ;Yﬂ AY Xa—f—n"%(}s

{ N
N

= xa 240

.- \¢; .
The additive prdperty of the sum of squares is readily demonstrated in
(2.12), Al !:l(aresu]ts obtained may be summarized as in Table 54
R TABLFE. 54
8T ANALYSTE OF VARTANCE FoT A BINGLE (LASSIFICATION

N

...\~ W
) 3

Source of variastion DT, Bum of squares
N _il' -
Within subelagses | & — P Xaf
Betwren suhclﬁses I u— 1 vl
et - . LA
Total ¥-1 YVye_nps
Lot
&

With Two Classifications. 3. Now we shall work out the equations
with two classifications—say column and row., We denote by Y. the
score obtained by the #h individual in the s1th column and the &th row.
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The basic assumption in the analysis of variance is that we may write

(3'01) Y-’:;aat = ﬂf + As. + Bs: + Isls; + zalsgx

subject to the following restrictions:

(3.02) Y A=

(3.03) Z B, =0

(3.04) Ieo =0

where s; = 1, , D1} 82 =1, , pay b =1, +, 1) padénotes

the humber of column%, Pa denotes the number of TOWS; 0, (\Iénc\)tes the
number of individuals in each subclass; M is delined as Lha gericral mean;
4., s the deviation due to the sith column; B,, is the dematmn due to the
sith row; £, represents the influence of thc m‘reracL{)u between column
and row; and z,,., represents the random effects. 0y0btuin the solution,

we first, WriLe \
A\

(3.05) = Z Z 2 (Yoo — M — 4, —.‘R;;\— 1..)

e +»ﬂ‘12‘1a. + az E Bgz + C\Esz E Iswz

f1 82

whoere m, and «a; are the *unfletermmed muliipliers of Lagrange.
Minimizing %2 with respect t@ 11‘” A, B, and 1,,, we obtain

(306) .a‘l'f = }\E?Z Ys;s;a - Y (i\l = p1p2n)
"\;‘1 ZZ ijsz o
R T Rl At 463
\“' 2 ISJRQ
‘..Q — I} _ 17 . —_ _ﬂ
~O° 0T T me Zap
3.0 ! EZY .,._EI”’_ as
(3.08) B, = e #1aet A i 2nm
=YY= 1 2npy
1 - - s
(309) lesg = ” stgﬁ - A‘gl B” 20
- 441

= YSNJ - Y.. - Agl - -883 _%
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2 ) L

" From (3.02) and (3.07), we have

o 'S-_ }7.-_ LT ____ﬂ —
(3.10) ; y: Z Yoo — o1 Sor T g
which immediately reduces to
(3.11) a; =0
Similarly,
(3.12) ay = az =0 A\
By the method of elimination, we get N
ne .Y

2 — e T 2SIV W

(3-18) Xz E E Z( Yh-'fe! Ysl“-';'.) L{ 2 é{ Ysl-s:t ﬂ; E’"[J }/slag_.
LI ) 1 #2 \l’ﬁ.’g‘ﬂ 4

The hypothesis we wish to test first is '\'(.“
(3.14) Ml = 0

that is, the hypothesiz that there is no in;ﬁ}iéncn of the interaction
between column and row. Assuming th&4“H, is true, we have, from
(3.05), O

(8'15) X2 = Ezz (Y-?Lﬂzt - ﬂf'._;—}‘g:-h - BH:)Z + ,81 Z A-sl + ,8‘2 2 Bse

3 g f ~

where 8, and 8: are the undt{ﬁérmined muitipliers of Tagrange. Minimiz-
ing x* with respect to M, (A, and B,,, we obtain
&

(3.16) PN M=7Y..
(3.17) SO A =1 -T2
A, 2pen

(3.18) \*"};" B, =Y., — 7.~
&\ 2p1?%

where »\

AN
9 Br=f =

Substituting these values in (3.15) and simplifying, wo obtain the rela-
tive minimum value x7 :

(3.20) %= Y ¥ Fowi = Vo — Fopy + 7.2
EISNEL I
=t ) Y Puo— Fo = Popo + 72
5 Y i
=X+ n) Y Von—pn ) Vi — pin Y Voot NT-.

I

Xz -+ 1
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Then we may test the relative hypothesis on the basis of X2
(321) I{o]_:As_l =0

that is, the hypothesis that there is no significant difference between
columns.,  Assuming that Hy, is true, we may write

{3.22) ¥ = Z Z Z (Yoo — M — B2 4 v 2 B,,
51 1t

where v i the undetermined multiplier of Lagrange. Minimizing x?
with respect to M and B,,, we have

(3.23) : M=7., N\
] =¥ — ¥ — ,L N\ ¢

(3.24) B, =Y., -Y.. S <O

where . O

(3 2) Y = 0 ("P«

Substituting these values into (3.22) and snnpl]fymg, ’We obtain
(3.26) =) Y E (Yo — Fou)? = 22 + o pznz 7. — NV

=x+ xi + xb \\
Finully, we may test the relative hypotheslq on the basis of X2
(3.27) Hyy: B‘,2 =0

that i3, the hypothesis that th.el:e 1s no significant difference between
rowvs.  Assuming that Ho. i&true and proeeeding as before, we obtain

(3.28) 2, = ZE Z w\gm A Rk s me 15
— NY?2,
= X,’J\:I"\X% + xi + X3e
From (3.28 fh,(, additive property of the sum of squares is again clearly

demonstr . Tt is also noted, in the case of equal frequencies in sub-

P TABLE &5
“RNNYSIS OF VARIANCE FOR THE PronrEms or IDOUBLE Crassirlcation

\3_

Source of variation D.F. Bum of squares
Within................ N — pips Xa?
Column X row.........| {p = 1{ps — 1) x:®
Column. .. ............ 7 — 1 xo®
Row.................. pe— 1 xoz’

Total N =1 EZ Z Vo — NV,

81 &z ¢




224 ANALYSIS OF VARIANCE AND COVARIANCE [Cuar. X

classes, that there iz only one answer for each hypothesis tested, no
matter what the order of testing may be. All the results obtained
may be summarized as in Table 53.

4. In general, if we have a problem of £ elassifications, the mathe-
matical expression of the score made by the {th individual in the gth
group of classifieation 4, the soih group of elassification B3, . . . | and
the sgth group of classifiestion R is as follows:

(401) Ysls:‘,..‘ wt = M + Asl +4- Bsg + - R+ oo + -

+ Isk,_is;; + Is1s-_-.55 + o + Isk,.:!sknls:, + T + Iglxg. gl “'— Zayag, - axt
where sy = 1, ~ » » [ piysa =1, <, pa; - s em=1, Py m
denotes the number of groups in classification 4 ; p. denotes the number
of groups in classification B; . . . ; px denotes the numbek 6F groups
of classification B; M is the grand mean; 4, B, . . . ,anhd B are the

measures of the main effects with respect to their own gubseripts; I's are
the measures of the interactions with respect to their{own subscripts; and
Zapus, - .-, 13 the error. The solutions for the sgt) of squarcs of each

source of variation are as follows: O

1. Within: ,x:} g
(4.02) Z EZYWRS‘ NP
E-fold ": .'5 Fofold subseripts

2. Interactions and main e[féé.t-s:

(403) &), - - E\Y“ .—S( Y T)

e
*———-"“‘v""--__—- 1
. r-folrl \ ¥ subscrmts w1 fnlc‘ 11th rlpt“-
i ‘gy LI PSRRI EEEE R ¥
Y
+S(ﬁm\» DR H‘“b(ﬁl )
.\\m
o\ =2 fnld subﬁc ipts
NN AR ] fes L o
o $ 4
S + (—-]_)""_;'\TY'

whered, - < -, §=1,2, -+ k;kis the number of classifications in the
whole study; 7 is the number of classifications under ealculation; s; {or &)
=1,2 - -, p{or p); 8a is g0 determined that

(4'04:) Z!"-:‘26’“=N=p1p21.-.3'pkn ('m=1,°";"")
84

L.y

and throughout the general expression the summations and the subscripts
which are not connected with the clagsifications under caleulation should
be ruled out. For instance, if we calculate the sum of squareg for the
interaction between 4 and B, the formula becomes
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LIOE‘) Pz, © "7, ’PI-:RZE }731325 T,

1 &

= (p2p3r T !pknz ?31: Ty + Pipa * " 0 ;pknz }_752; T )
5 22
+ NFz .- -

For another example, if we calculate the sum of squares for the main
effect A, the formula becomes?

(4.06) Doy ,pmz R, - NTR -
ET) L\
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Tt iz not possibleito include cither the mathematical solutien of the problem of
the analvsis of cofamianee or the illustrations of specific problems prepared to show the
use of the gendral cxpressions given jn this section. The peometric representations
of the mmli%%'f varance have also been developed.  The interested reader may
steure mimeagraphcd copies of these supplements by writing to the anthor,
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CHAPTEIR X)

APPLICATIONS OF THE ANALYSIS QF VARIANCE AND
COVARIANCE METHOD

We shall now apply the methaod of anslysis of vieiinee sl (‘QQa.ria.nce
t0 a number of the simpler practicy] problems met with by t1sNésearch
worker, The application to some of the maore compley EypodOkkituations
in which these methods are indispensable will e nadeN'in“the sequel
to the results of specific experimental destans, A\

We shall proceed first by applying thoe pi'in('iplv.«t.fpr:"sf'rll(‘d in Chap-
ter X to the mathematical solution of the profiléin. We shall then
carry out the necessary caleulations for the sONNGON ] inferpretation.
We begin with the simplest case of the snalyiy of varianee, where thero
1s 2 single criterion of ¢lassification. ‘O

Problem XI.1. Single classiﬁcatiqn': with equal representation in
classes, Tt us tuke the problem of,rﬁeiwuring‘ the vesemiblunee in intel
ligence of identical twipg reared apaftiag ro ported by Newman, Freeman,
and Holzinger (Ref. 7). The da‘tﬁf’in the form in which we =hall use them
in this analysis are given in Takle 5. We must first see if we can trans
late our problem intg mathématioa] language.  If it ix amenable to such
A0 ) pressed mathematically us 4 problem of testing
statistical hypothesee{\ ”I\-Iat.hematicany, the relationship may be
expressed thus:

Xﬁ, = A + + z. (110]]

AN
WheI:e i = ],.oﬁ{;wf =1,23 ... s 0= 19): X, is the mental age of
the ith nﬁi?)ér of the tth pair of twins; 4 s a4 measure of the common
mental ageNof the group testod; ¢ ig 4 measure of the mental age of the
tth t?‘\flj LPair; 2, is the measure of the random effects.  The restriction is

a\¥

O Ci =0 (11.02)
;

We m_usft first test the hypothesis tha the variability of the mental-
48e seores is the Same for all twin Dairs, since this is the fundamental
aeRumplion underlying the, analysis of variance, The h ypothesis may be
Written

Huo = o (11.03)

dard deviation of the #th twin pair. ThiS
means of the 7.-tegt (see page 82). The calculs
226
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TABLE 58
Mpxran AGus OF 19 PaRs o TpenTICAL TwiNs REARED APART
I :
Mental age
Twin pair Sum Dificrence
(& X+ Xu [ X~ Xqf
Xl.t Xﬂ
1 163 186 349 23
2 126 149 275 23
3 191 194 385 3
4 170 204 374 2\
N 171 178 349 "7
6 195 180 375 A6
7 170 172 342 e\ i
8 170 142 a2 % N/ 28
9 195 185 380 4N\ 10
10 187 195 3BANM ¢ 8
11 176 222 398 & 46
12 223 210 433 13
13 131 182 363 1
14 164 161 ..\\,,’ 325 3
15 175 171 ¢'{) 346 4
16 123 120 NSNS 243 3
17 192 175 A\Y 367 17
18 184 148 | ™ 332 36
19 168 15008 319 17
Sum 3,324 3,296 6,649
Sum of RN
BUuAres 590,946 593,531 2,361,311 : 7,643
£ .

)
tions are carried out ag Mcated in Table 57. With a value of L, = 117,
E =19, and d.f. =.~Il,~~’we refer to Nayer’s table {(Table V, Appendix)
and find that ouf\Value is greater than the table value (Lie1 = .096).
Hence, we m%('@éépt the hypothesis Hy at the'l per cent level.!  'We can
now proceedhte apply the analysis of variance method.
We uscvthe maximum-likelihood procedure of estimating the sumg of
squarqsgoi"t-he different components as shown below. We first write
’”\‘ w4
3
N ¢ = ZE(X,} —4d — C¢)2+2)\ZC¢ (11.04)
2 ¢ 2

where ) is the multiplier of Lagrange. Minimizing ¢ with respect to 4,
C,, and A, that is, differentiating partially with respect to A, Cf, and A,
equating the resulting equations to zero, and solving them for the values
A, €, and A, we obtain

. 'Tt should be pointed out that for the case no= 2, the Li-test may sometimes be
indeeizive. We are accepting the hypothesis here at the 1 per cent level,
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A =lEEXu = X.. (11.05)
2n T 5
O: Z%EX\} "")-{.- = X.t - X.. (1106)
2
A =0 (11.07)
TABLE 57
CarcutatioNn or Ly IN Testivg ooy = o
91’ =
| log . e log ny Z(X,;, - X log &' e log &'
, N\
_ N

- 2\ |
2| 1 .30103) 60206 2645 @yl2213) 484486
2 1 .30103| 60206 2645 wl 2_-12-2-131 4 534486
2| 1 .30108| 60208 4.3 U 63321 1.30642
2 1 L30103| . 602084 hiB.0 7 \" 2.T6193] 5.52386
2 1 L90103(1 60206 24.5 ~ 1.38917] 2.77834
2 1 ,30103] .a60206 1125 2.05115) 4.10230
2 1 .30103| . 60306 2.0 WO JR0103) 60206
2 1 .30103| . 60206 302,00 2_59320] 5.18658
2 1 .30103) 602086 PR N 1.69807] 3.3097%4
2 1 80103 60206 BAD 1.50513 §.01030
2 1 .30103| . 60206 10565 0 3.02449| 6 04898
2 1 30103 . 60206 845 1.52686| 3.85372
2 1 -30103|  .60206] L\ .5 — . 80103| — . 60206
2 1 .30103 .6[}205 N 4.5 65321 1.30642
2 1 .30103|  _a0208)% 8.0 .90309; 1,80618
2 1 -30103| 50206 4.5 .65321) 1.30642
2 1 -80163| 60206 144 .5 2. 15987 4.31974
2 1 301034 € 160206 648.0 2.%1158] 5.62316
2|1 .30183)\ . 60208 144.5 2.15987; 4.31974
N =38 |log N = 1,57978|11.43014 3821.5  |log E 6 = 3.58224(63.57982

PN t
o\

Subst-ituﬁiéé\fhese values in (11.04) to obtain the absclute minimum

value of\ 3‘, we have

N
.\
\
3

Xi = EE(XQ - X-s)z

i

which is the basis for testing the following hypothesis:

IIJ_E(C:)

"

E is the notation for expeetation
of & parameter

(11.08)

(11.09)

that Is, the hypothesis that the mental age of an individual is independent
of the particular twin pair to which the individual belongs. If the
hypothesis is true, then (11.04) becomes

¢=EZ(X«—A)2

(11.10)
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Minimizing with respect to A and substituting the obtained value,
A = X..in (11.10), we obtain the relativc minimum:

=) ) X=Xy = DRNCTER LN S
C n e (11.11)
= x; + xi (11.12)

il

where x; is the estimate of sum of squares for “within” and x} is the
estimate of the sum of squares for ““between.” Then the test of H, is
given by

O\
__n X
F—=% '\(1\1.13)
with #; = n — 1 and n: = n. For purposes of calculation, s s{mpler
to write ¥} and x} in the form N\
X3 =) (X~ Xa)? N (11.14)
t

X;:
E (X + Xﬂx)g 3 zg\ :| (11.15)

Caleulations may be checked by .,
(Z 2 Xn)

X = ZE (11.18)

Separately, and using tk@dcntlty
QO x =xi+x (11.17)

The efficient.gv ay to caleulate the necessary values is shown in Table
H6; we first { 0rm~\he sum and difference for each pair of values. We then
calculate the’s m. and sum of squares for cach column, except the last,
where the\sum of squares only is needed. By this method we soeure
a che@f\on the ealeulations at each stage.

\Erem the last two rows of Table 56, we vbtain

E (X — Xa)® = 7643 (11.18)
]
2 (X3, 4 Xa)? = 2,361,311 (11.19)
1]

Z ZX,; = 6640 (11.20)

ZZX -3 [Z (Xu+ Xﬂ); + Z (X — Xo)?| = 1,184477  (11.21)
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Substituting these valucs in (11.14), (11.15), and (11.16}, woe have

x: = 3.821.5
xi = 17,2555
x: = 21,077.0

We now place all of these values in one table as shown in Table 58,

TADBLE 58
ANALYSIS OF VARIANCE oF MENTAL AGrs oF IDENTICAL Twixs HEARED APART

Souree of variation | D.F. | Sum of squares | Mean sguars I ‘ LI ypothesis

N

2
Within pairs 19 3,821.5 [ 201.132 ’\
Between pairs 18 17,255.5 038,638 JAETT66 Rej.
Total 37 21,077.0 AL

<

NS
Referring to the F-table with n, = 18 and »E = 19, we find that the
obtained value of F is significant at the 1 pel\\ent level.  This statement
meals that the mental age of an individuaNs not independent of the twin
pair to which he belongs, or that there {2 significant difference among the
means of the 19 twin pairs, Anothey interpretation is that the intraclass
correlation between twing is sigmificantly greater than zero. Intraclass
correlation is discussed belowa
Fisher (Roference 3) has Shown that ah unhbiased estimate of the
intraclass correlation, e \:s@m be obtained from the relation

N 1t G—

\ (11.22)
1 —-r
\ ¢/
where & is the{number in a group or class, Where i = 2,
'S X
A\ F=ltr (11.23)
I—r
o 147  958.638
\T}gus In our problem, <7 ~ %7133 = 4.7662
r = .653
Also, o= 958.638 — 201.139

- 988638 T @ = D(origy — 053

When there are equal numbers in the classes or groups, the variation
of the class means relative to the variation of the individuals within the
classes is measured by the intraclass correlation. If the class means
differ significantly, a significant positive intraclass correlation is indi
cated; when the mean square betweon classes equals that within clagses,
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the correlation is zero; and if the mean square between classes is less than
that within classes, the intraecluss correlation is negative.

Problem XI.2. Testing the homogeneity of multiple groups of
measurements. We shall apply the analysis-of-variance method to
test the homogeneity of 6 sections in college zoology with respect to their
achievement as measured by a final examination. The basic data are
given in Table 59.

Denote by X, the score of the #th student in the sth section. The
basic assumption in the analysis is that we may write

Xaﬁ = A + Ba -i_ Zat (11'&1’)

where s = 1,2, ++-,k;¢t=1,2 -, n;n denotes the number of
students in the sth section, and k denotes the number of se(:tiqng'.“':i isa
measure of the achievement of all the students and is defined asthe mean
score for all individuals and scctions; B, is a measure of the achicvement
of the sth section; z. is a measure of random effec < issumed to be
normally distributed about zero with constant stindard deviation, .
The restriction is RN

v/

70\
233 -0 (¢ (11.25)
a N
In agsuming that ¢ is constant, we, ar;e" assuming that the variubility
of the scores is the same for each se,qt;ioﬁ‘ This assumption may not be
fulfilled in practice, and hence, wg\inust first test the hypothesis
Hoos =0 (11.26)

,i'"z\ TABLE 59
HumMs AND SUMB OF SQUAR%Q\O'P SoorEs FoR Hacm Seeriox 17 CoLLEGE ZoOLOGY

£ " " ¢ Sum of squarss
N K 1TIL O SquELI‘CS ilhOUt- MEeaAns
. No.ohstudents | Bum of scores
Hection ~ \ of seores 2
.~§;~\ s X Xz nX? — (X
\ £ ) e
O . -
AN 145 23,025 3,759,061 102,849 .7031
NN o1 13,529 2,065,833 54,472 1099
N4l 84 13,127 2,130,435 70,028 7024
v 197 18,825 2,012,131 121,732.3779
v 46 6,828 1,071,968 58 4553043
VI 82 12,889 2,108,159 £2.29% 2560
" Total 575 | 88,223 14,047,587 — 511,417.0036

where ¢, denotes the standard deviation of the scores in the sth section.
If this hypothesis is aceepted, we conclude that there is no difference in
variability among the sections and then proceed to test the other hypothe-
sis. If we reject the hypothesis Ho, we cannot make an exact test of
another hypothesis.
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The test of the hypothesis Hy may be made as follows, We caleulate

L =[] (E)v 0 (E%)v (112

s W

a

where N = Z 7a, IL denotes the produet, and 8/ denotes the © within " see-

&

tions sum of squares for the sth section. We refer to Nayer's tables of the
Li-distribution with k& = 6 and d.f. equal to the harmonie mean of T
where f, denotes the d.f. associated with 6, in the sth section, Alhe rle
to be followed in using these tables is to reject the hypothegis\then the
calculated value of L, is less than tho corresponding [ péeeent point
given in the table. X O

The computation of the L, for the 6 sec tions is cargled ‘out as shown in
Table 60.

(0
TABLE 60
CarouraTion or L, vor TRE TEsT oF ™HE MNFOTHs18 Hote = o
| A
fia log ra re log n, o ,‘.\ lag a4, | fia log &
- AN o \
145 2.16137 | 313.30885 0810 7031 012210 72677048
o1 1.95004 | 178 27264 54472, 1000 4 TRHA | 48099238
5 102428 161.83062 | W Yo'nan vony 4. &0778 | 4141382
127 2.10380 | 267.18260 | 121,732 . 3770 5.0 . 645, 84707
46 1.66276 | 76.48606 |\O% 58435 043 4 219.27372
_. & 1.91381 | 156, 952am\ £2.228. 2500 403 03164

i 5?5|10g1\Fr = 275960 115391270 207 = 498,706, 5430 lom Zin' - 8. GUT0 2887 AZBI8

LN\ | i |
. 2N
To find the Va.h{(af Ly, we caleulate the value of log Ly, where

1
log Ly = log ¥ - 1 : ) :
og L og J\{\n, 5 7, log n, + = E n log 8] — log (\ 33) and then

find I, frc;n{}%able of antilogarithms,

Here\0g L1 = 27597 — 2.00680 - 4.63.145 _ 5.69790
Q = 9.98945 — 1p

AN Lt = 9760

\T}lé harmonic mean of fo=

6 §2.64
SRR I ol e mpnp
Referring to Nayer's tables With & = 6 and (f. = 83 wo find that
P> .05 We atcept the hypothesiy Hy and conclude that the sections
are of’equal variability. Consequently, we ean proceed to the analy®ss
of variance.
The next step is to est

imate the sum of ! - fCaithi Rl B}" the
method of maximam ljke quares for “within

likood, we obtain

¢ = 22 (X~ A = Bt 4. 0 > B, (11.28)
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Differentiating ¢ partially with respect to A, B., and A, equating these
equations to zero, and solving the resulting equations for the values of
A, By, and X, we obtain

A= %?ZZX; =X.. (11.29)
g i
B,=i EXﬂ-A =X, —X.. (11.30)
4t
N = (11, 31)

Substituting these values in (11.28) to obtain the absclute mmlmum
value of ¢, we have ¢\ \

=22 Z[(Z :*) K

PR )
M'\i.'
which is the basis of testing the following hypothesisi’

E is the notation for a@\\p&ctation of) (11.33)

Hu:E(By) =0 (a parameter ,\

that is, the hypothesis that the sections, a.ré éﬁual in achievement. If the
hypothesis is true, then {11.28) becomes

¢ = (Xa.; — Ay (11.34)
&

Minimizing with respe@st io A and substituting the obiained value of
A = X..in (11.34), Y»c obtain the relative minimum:

3 ATy 05y 03

A\ =x +xi (11.35)
"\"

wher e*xa is the estimate of sum of squares for “within” and x} is the
estiméte of sum of squarcs for “between.” Then the test of H1 is given
by

N-—56

Y= (11.36)

[ 1]
[38IaN

withn, = 5 and n. = N — 6. )
The “within” sum of squares may be obtained directly from the last

row of Table 60, E 6! = 498,766.5436. The “between” sum of squarcs

is ealeulated from the totals given in the third column of Table 59 as
follows:
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145 91 84 e s e
, ~ B2 o 6504500

D4

(23,025 , (13,520)¢ asazne (18,525 4+ (6829)" | (12,889):

The total sum of squares is

(G2 =) 88,223)°

ZZK@ — = = 14,047,587 — SE = 511,417.0036
8 o . L3
. ~
To test the hypothesis H1, we calculate .
. " ¢
F_ 5_6_9 . 12,650.46 _2530.092 _ 288’6

5 498,766.5436 ~ 876.567 K
Referring to the F tables with ny = 5 and {ei’?—- ;_';{}9, we find that
05 > P > 01 Statistically, the aceeptancesohNI; remnins in doubt.
We may state that the differences among NhY means of sections are
- significant at the 5 per cent level but noﬁ@éni[i(::mt al the 1 per eent
level.  The results are summarized in Tdblé 61.

N\
TABLL )61
ANALTSIR oF VARIAKCE OF Scomzs..'gx Drrrenevr Skeroxs IN ZooLody

T Ay |

o SN Mean i
¥ DT \ " ’ :
ariance F. | 8um Sfsquares square | F | ITypathesis
—_—— 78 —_— ) T
. & |
Bgt\xfgcn sections 3 \‘ « 12,650 46 2530.092 | 2 886 ! Remains in doubt
Within sections i 408,766 5436 876 567 !
Total (8% | 511,417.0030G o |
PR

When af Ej,?ghiﬁ(_tant difference hag been found among the means of the
sectionNt. may be of interest o make special comparisons hetween the
MEANS O any two of the sections, Here the usual test of significance
befav&tn means cannot, be applied, since the two means cannot now be

Tegarded as randomly drayn from a normal population. Tisher (Ref. 2)
\1‘135 suggested & test taking into aceount, the probability of a random
sampling based on binomia] theory. This method will be illustrated by
eomparing the mean of the highest, with that of the lowest section. The
analysis of variance could be used, but we shall apply the {-test with the
modifications indicated.

We shall test the significance of the difference between the means of
Section I and of Section IV, 158.8 and 148.2, rospectively. We find that

o= -Bio Xy 1588 -1z

———— S = 3‘02

1,1 1 1
$ \XNI -+ :7\!_;; 28.84 \/115 + o7
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for n = 270 the corresponding P < .01. The difference seleeted, how-
ever, is only 1 of 15 that might be found among the meuns of the six
sections, The required probability for the selected difference to be
signifltcant is set, therefore, not as 1 in 100 but ag 1 in (15)(100) = 1500,
Since the probability eorresponding to the observed value of ¢ is about
L0024, or 2.4 in 1000, it is greater than 1.51in 1000 and therefore is regarded
as not significant.

Problem XI.3, An application of the analysis of covariance. The
process of applving the analysis of covariance consists in breaking up
the sum of products into parts assignable to different factors. This is
eomparable to the process of breaking up the sum of squares in the'case
of the analysis of variance. A\

We shall apply the method of the analysis of variance and ‘povariance
to the combined analysis of mental-age scores and educatlonal -age
scores, as meastred by the Stanford Achievement Tes;, in*the case of the
19 pairs of identfical twins reared apart. “~\

Let X, denote the educational age of the ith membel of the fth twin
pair and ¥y the mental age of the ith membey@f the #th twin pair, We

may thon write N\
Xo=4+ 0:;‘17’35: (11-37)
and Vi = B + BT 2ty (11.38)
with restrictions N
}:Cs = (11.39)
5' t
o) ED‘ = (11.40)
\\" ?
where ¢ = 1, 2; ¢t = 1 2, -, n; where n is the number of twin pairs.

The dlﬂcrenae betn een the educational ages of the pairs of identical
twins may be (}ue partly or wholly to differences in mental age. The
problem 15\(0 find out what part of these differences may be assigned
to differ Lﬁ’}s in mental age and to adjust the analysis accordingly. We
wigh, A find out whether there is a difference in achievement of the
idéntieal twins when they may be regarded s of the same mental age.

¥ we may assumc that there is a lincar relationship between educa-
tional age and mental age,® we may write, gince Y denotes the mental

age of the ¢th member of the fth fwin palr,

Xy=a+b¥Ya+ o (11.41)

where @ and b are parameters to be estimated from the data; b is the
regression cocflicient of educational age on mental age; Si is thc measire
of the differences between the cducational ages of members of the same

2 For the test of linearity see page 240.
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twin pairs and of those between the educational ages of pairs of twing
not attributable to the factor of mental age.
-As formerly, we minimize:

¢ — ZZ (Xu —a — bYa)® + 20 Z O, 4 2, ; D, (1149

with regard to ¢, b, Ny, and A; to obtain the relative minimum of ¢, xL

Solving for @, b, Ay, and ), we have
N\

@ = Qlﬁ (E E Xy~ b ZE ) Oy 143)
N

[‘? (X + X)) | D (‘m b ¥a) |

Z (Xn¥u + Xy

2?%\

b= '\ (11.44)
R
PIRLIC,
M :—i;O} (11.45)
Q:@;‘&: 0 (11.46)
Substituting the values af a: b A1, and A; into Fquation (11.42), we
obtain

xf\)z [Z (Xu + X — (EZX)J

X = %Z (X
R 3, o X J (\ (Vo + T2
i"\ (XMYU +XoVa) — 2 i I
3 Gy 0¥ e
N\::\;{' _ E E ye (11.47)
v = x% 4 x}, say (11.48)

The proportion of the variance attributable to mental age I3

{Z (Xu¥Vy + X%Vg) — [—Z_._ LX )J LCT_(P };]]
{ = - 2n !
Y'Yy )
v Q3
L(Yi’ ’ l2?.5 T

(11.49)
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To obtain x}, we subtract [ from the “between” pairs sum of squares,
since the other two quantities in (11.47) are the “within™ and “belween™
pairs sums of squarcs for educational age.

The necessary ealculations may be efficiently earricd out if the data
arce arranged as shown in Table 62.

The results are presented in tabular form in Table 63.

TABLE 62
EpccarioNal axn MenNTAL Agms or 19 Parns oF Ipentical TwiNs REARED APaRT
Fduvational | Mental age Q)
Tsin mge XN i Fu x 2
w 3 kS
pair Ay - Xl X+ X X ¥l Xoe - ¥ Epi:"\i\y;:;
Xu Xy Yu Tu 4 \
i ‘S
‘S
i 181 200 19 163 186 20,503 /32000 132,909
2 131 169 38 125 149 15,506 ¢ ©5181 82,500
3 205 188 16 191 194 29,085\ 26,6667 151,600
4 173 207 34 170 204| 204167 42,228 142,120
5 178 182 6 171 178 3Qud6 32,396 124,942
8 151 155 4 105 180\ Negieas  27,800| 114,750
7 191 189 2 170 173 )82,470 32,308 120,960
8 75 162 13 170 ~Ja2| 20,750 23,004 105,144
g 210 202 8 195 G185 40,080 37370 136,560
10 i81 200 i9 187 £\Y195| 23,847 29,000 145,542
11 157 226 84 176 ™ 223| 27682 50,172 152,434
12 224 218 14 228, 210| 49,852 44,100 187,922
13 196 189 7 aa] L \I% 1582| 85476 34,308 139,755
14 176 159 17 O V6 161 28,864 25,500 108,875
15 159 161 2 175 171| 2r.E25 27,531 110,720
16 130 131 1 123 1200 15990 15,720 B3.423
17 176 176 0 192 175 33,792 30,800 128,184
8 192 157 a5 184 148 35328 23,236 115,868
_ 19 177 172 5 168 151| 20,786  25.972| 111,381
Tolal | 3,301 3436 L AN 3,524 3,325,505,727  610.081| 2,405,689
Bum of- A\ N
squares| 605,187 631,518, 100417 2,462,803 500,045 593,531 1,206,708
'| £ 3 v k

RS

S TABLE 63
ANALYSIS OF 'yxm_mcm Axp COVARIANCE OF HDUCATIONAL AND MENTAL Adres
N Sums of squares
N\
a\'4 Sums of Regres- | Correla-
.3 Products : p
%uauce D.F. M.A. times sion tion
Mental | Bducational | ° ]3 A voefficient, | coefficient
age age e
Between pairs
of twins 18| i7,2565.5 15,727 .8 13,548 .369 0.785 822
Within pairs
_ of twing 1| 3815 | 52085 | 3863500 | 1011 | 866
Total 37| 2L,077.0 | 20,936.3 | 17,411.900 | 0.827 | 829
i

The guantities entered in Table 63 are calculated as follows.
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Educationa! age:

4 a - o
Between pairs: —;;E (X + Xo)? ~ o (Z Z X,-;) = 15,7278
t % £

Within pairs: %2 (Xy = Xa)? — 52085
!
Total: ) 2 Xy — (Z z A;) = 20,9363
E T 2
M :
Mental age ~
. NEER TR
Betwcen pairs: %Z (Yo + Vo)? — o (E ¥ “) = |f;2i=),0
¢ it : \' N
Within pairs: %E (Vi — V) 38215

: "G
Total: 22 Y2 — ok (ZE Yﬁ)z LY = 210170
it i v
Products of educational age by mental agein

Nt
Between pairs: %Z (X1 + Xg) (Y:ls Vo)
n )

1 ’.’.: r -
— g (X $8X5) )} (Y + 1)
2 12 -]
= 3(2,405,689) — J[6797][6619] — 13,548 4
Within p&irS: EXU’KR —+ 2 ngYgg - Ql' 2 (‘Yr_; + X‘g;)l'\)l + Y;!d)
e

¢ N/ t £
=)206,708 — (2,405,689 — 3.863.5
Total; \‘E XYy + E XY

N

£ H I3
A\
\"\* - ‘EIF [2 (Xu + th)] [E (Yle ‘f‘ Y‘th—l
N T 7 -
;;.‘\ = 1,206,708 — #45[6797][6649] = 17,411.9

mfﬁ’Wo methods for adjusting the sum of squarcs of cducational ages are

iven. The first method makes possible a more nearly exaet test of sig-
nificance. The adjusted sumg of squares are gbtained by adjusting the
“within™ pairs and “total” each with its own regression cocfficient an‘d
subtracting to find the adjusted “between pairs” sum of squares. 7This
method is depicted in Table 64. The adjustments are as follows:

thin pais: 52085 _ (336357
Within pairs: 5208.5 38915 — 1302.5

i 2
Total:  20,936.3 — (LD41L0)? .

21,077
Between pairs: 6562.5 — 1302.5 — 5249.7
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TATBLE 64
ANALYEIS OF VARIANCE OF IEDUCATIONAL AGE SCORES OF PITL 18 PaRs OF IDENTICAL
Twms—METHOD 1 ORIGINAL AND ADIUSTED SUMs OF SQUakgs anDd MpaN Sguares

Original analysis Adjusted analysis
Varianecc D.F. DT,
Bum of Mean Sum of Mean
Bguares square | squares  sguare
Between pairs 18 15,727.8 873.767 18 5249.7 291 .65 ~
Within pairs s 5,208.5 274,132 18 | 1302.5 72 .36
Total | a7 20,936.3 505 .816 h 36 6552.2 , .\‘\

A second method of adjusting the sum of squares is shown iﬁ"’lla-ble 65.
Both the “between pairs” and the “within pairs” sumgai*squares are
adjusted by the use of the *within pairs” regression coe:ﬁc-ient:

Bz — by)? = Za? — 2b3xy + BTZYF O
3863.5 L 03863 5Y°
= 15,7278 — 235575 (13’5@:@.}\(382?)) (17,256.5)

— 15,727.8 — 2.02198(13,548 4" -+ 1.02210(17,255.5)
— 15.727.8 — 27,304.5038 = 17,636.8466 — 5070.053

In certain cases it may be neceg’saiy to adjust each sum of squares
with its own regression coefficiedh, (Ref. 5).

RN
(¢ \JTABLE 65
ANaLTsIs 0F VARIANCE OF ED}SATIONAL Age Scores oF THE 19 Pains or IDENTICAL
% vs 0F SuaRDs AND MEan SQUARES

Twins—MzETHOD 2 QRIGINAT AND ADIUSTED S

R
Aoy Original snalysig Adjusted analysis
2\ -

. NG - i

Variance [NV.F. D.I.
W\ Bum of Mean Sum of Mean
Ay sopuares BQUATE squares sguare

AN
RS
e -

Between pairs I8 15,727.8 R73.767 18 ‘5970.053 331.670
Within pairs 19 52085  274.3182 | 18 | 1302.500 72.361

Total —57 | 300363  565.846 | 86

The adjusted between pairs sum of squares and mean square give
in educational age freed

& measure of the difference between twin pairs !
from the influence of mental age. To test the hypothesis that these
adjusted differences are zero, we caleulate:

1 Io mean square between pairs
%0 = 519 “mcan squarc within pairs
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and refer to Fisher's tables of z with degrees of freedom n, = n — 1 and
7z = n — 1, where » is the number of twin pairs. In our example we
have

1 20165 1 - —_—
%0 =3 log, “236 '3 log, .03 = 607 {Tuble 64)
1 331670 1 1 Eed e . -
or 7 =5 log, 936 5 log. 4.581 = 761 (Table 65)

From Fisher's tables of z, entered with degrees of freedom n, = 18
and n, = 18, we find that 2, is greater than the value given in the tahle
at the 1 per cent level. We could also have used the tables of Stedecor’s
F.  Wercject the hypothesis and conclude that when the fac’{:.pr\of mental
age 18 removed, the means of the educational ages of tyih pdirs differ
signilicantly. A

We obtain three measures of the degree of relationship between
educationsal age and mental age from the resulis oj'\i['ﬁlJi(t 63. From the
first row, for between pairs, we have \/

SRS T
V/(17,255.3)(15,727.8) M271,391,052.9
From the second row, for within pairs,f e have
38638

" V/(3521%) (5208 5)
From the third row, for thgjtoi.aé.l, we have
) .{1%411.9 _ 174119

8= SOt = o e = 829
N RT0T(%0,9363) 21,006

The second, % al .866, is the best measure of the degree of rclation-
ship; in the th(rd, s = .829 the relationship is masked by the inclusion
of the betweeh<pairs differences in educational age and in mental age.

Problem XI.4. Test of the linearity of regression. The statistical
study efthe relationship hetween two or more variables involves consid-
eration of the kind of relationship existing among them. Regression
m& be linear or nonlinear, and it is essential in any problem involving
the use of regression to determine which particular kind best represents
the observationsl data. The statistical method of correlation, particu-
tarly the product-moment correlation coefficient, involves the assumption
of lincarity of regression. The analysis of variance provides a straight-
forward method of testing the type of regression. Since linear regression
is the type most often encountered, we shall consider here the problem of
testing the linearity of regression (Ref. 5).3

? For other cases of Jpolynomis) equations and espeeially for the separation of surﬂg
of squarcs corresponding to individgal degrees of frecdom where the independel
effects are represented by polynomials of differcnt degree, see page 309,
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We may take as a practical problem the case presented in Table 66,
that of determining whether the relationship between the scores of the
game individuals on two tests, one administered prior and the other
subsequent to instruction, was linear in form. We shall also test another
assumption underlying the product-moment correlation method, the
homoscedasticity of variances of the different arrays, that is, if the
varignces of the different arrays are equal.

TADLE 66

CoRRELATION TABLE FOR THE INITIAL AND FINAL Scores or 263 STupmNTs oN 4 TEsT

vy CounegE Brouoay ~
X (initial score) y .\:\
L 3 N )
10—-112—|14— 16— 18— 20— |22— | 24— | 26— 528;— 30— F
N

Y 44— \ } 1
42 — 1 1
40 — \\ i 1 2
FB88— 2 \ o1 3
i 36— 1 1] 1 2 4 3 (N 4 4 N 3 32
n 34— 2 2 5 6 NS 6 1] 3 2 34
a 32— 1 2 1 2 8 I - 4 8 4 1 26
I 30— 1 1 4 3o 5 & 8 4 a7
a8 — pid i ENON | 5 3 2 2 1 31
5 26— 3 1 i 41 .8 5 3 2 3 2 30
¢ 24— 3 2 2 5 6 3 3 3 1 1 20
o 22- 2 3 1 { 4 1 1 14
Foo20— 1 i 2 LY 1 1 . ) 1 g
¢ 15— SN ]
16— A \~\ 1 1

14— O 1 | 1
r 12 Y14 | 30| 41 33| 29| 30 32 22 10 | 263

"\..

Let X :t.\i’:.rcpresent the scores on the initial and final tests, respec-
tively. . Then the regression function, when linear, is given by
(O) P—a+bX - (11.50)
thré o and b are two parameter values, the value chosen for a being the
mean, ¥, of the observed values ¥, and the value given to b being the
estimate of the regression coefficient of Y and X. Y is the expected
value of ¥ for each X, and X is the mean of the X values.

In Fable 66 the data are grouped, and we shall take as the selected
values of X the mid-points of the several class intervals as shown in Table
87. Tt is observed in Table 66 that for each X the several values of ¥
form an array. Then, letting Y. represent the score on the final test

of the {th individual in the sth array, we have
V. =4+ B.+ 2 (11.51)

AN
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where t =1 2 - .
arrays and 7, the number of individuals
mean of the scores of
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Cy M) S

=12 -

in Table 67. From Weleh’s formula for

we have

L= H (’:—s)g

the L-test,

L] &k

\\

[Criap. X7

» k5 & denotes the number of
I the sth array. A is the
all individuals on the final tost i By gives the measure
of achievoment on the final test of all individu
Zu represents the measure of residual vari
attributable to random factors, such
independent of X,

with standard deviat
latter assumption will be tesic
and sums of squares of the scores on the final test in each

als in the sth array; and
ation or the portion of ¥,
as errors of measurcment, which are
ze 18 assumed to be normally distributed
ion ¢, supposed Lo

ahout 0

be the same for gl arrays.  The
«l first, by using the Li-test.  The sums

arrayare given
N
¢\
N

*~ (11.52)

O, \7 ¢
M= o
s Zﬂi ON

L 1 > ) .
log L = log N v z n;log n, 4 v Z ns{cgg 0. — log (E f?_,) (11.53)
s A :

 { 3
TADLIE 67
By anp Sum op BQUARES or, ¥INAL Scorms v Fachn Armay

— TSNP SuM
. S of |
Bum of LN — P A} [
b sasqusres - A )
A{ray k! zifuc . seores (0% Scores (2/ I ,,) (%,‘r Y
No. s t -
x, yuy v, — ¥y -
'&..g A‘( Yse Ty e
(1 (2 BN @ (5) (6) (71
— A i
L1060 12 | 3180 8,659.00 |  8.427.00 232.00
2 25710 1 2650 | 7oss 50 7,022.50 264 00
8 [(u's 14 1 407.0{ 12378 50 11,832.07 547 43
4. 4165 30 B41.0 | 24149 50 23,576.03 573.47
LBNY8S | a1 {11005 85,408.25 | 34,565.62 842.63
NA 205 33 | 1005 32,016.25 | 31312 50 70345
7 12251 20 | g0’y 25,809.25 | 2506056 748.69
5 |285] 30 | 91970 | 39093 2% 28,152.03 870.22
9 12651 32 | 10080 33,484.00 | 33,024 50 45950
10 1285 22 | 713°g 23,447.50 | 23107 68 339.82
ML 138051 10 | 350 10,930.50 10,562.50 368,00
Total 263 | 7875.5 | 243 503 50 236,643 20 5950.21

In our problem, as shown in Table 68, we find

IOg Ll

= 24200 — 1.4219 + 2.7593 — 3.7745 = 9.9829 — 10
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So we obtain Ly = .961. Referring to Nayer's tables with & = 11 and
harmonic mean,

: 11
fo= g
T A T o T s T o o S U R S M WU D B
= 18
TABLE 68
Carcuratioy oF Iy roR THE Tear oF tor IlyrorTassis Hile, =«
I Ry ‘ log #s | n,log n, [ log 8/ 7, log 6,
N
11 12 1.0702 232 .00 2.3655 Vo O
9 10 1.0000 264 .00 2.4216 ) '\“.\-‘

13 14 1.1461 e 547 .43 2.7383 ()

29 30 1.4771 . 573.47 2.7585 \ §

40 41 1.6128 e 842 .63 2.9256

32 a3 1.5183 T03.35 2 879

28 29 1.4624 van 748 .69 ‘*3,\8 42

20 30 1.4771 . &71.22 979401

31 32 1.5061 459,50\ W 2.06623 i

21 22 1.3424 A 339,&\ 7 2 5313 ,
_ 9| 10 | 1.0000 » 36800~ | 2.5658

—| -3 &
263 Zn log n. = 3739627 | 5950721 Z n, log 87 = 7256954
g Q‘n”" &

we find that the value of Iy is g;‘ré&ﬂer than the tabled value at the 5 per
cent level, so we may assumié\that o, i3 constant. The first analysis of
the scores for the final t-f;sgt:m given in Table 69,

\\
\ TABLE 69
ANALTEJOF VARIANCE OF ScORES on Fivat Trsr

Sourc@.\'of‘ 'variation Tr.F. | Sum of squares | Mean square
O\ L |
O
Retween ghesns of Arrays 10 212.49 81‘ 249
Withip.gvrays | 252 | 5950.2] L6904
\”'Tot-sll 262 6762.70 | ...,

The analysis consists in breaking up the fotal sum of squares into two
components. One component gives the mean-square estimate of the
population variance between means of arrays and the other the mean-
square estimate within arrays. The respective mean squares are given
in the analysis-of-variance table. The sums of squares for each source
of variation are obtained as follows, making use of the totals recorded in
Table 67.

The within-rays sum of squares is the total of column (7), 5950.21; the
between-means of arrays sum of squares is obtained from the fotals of
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columns (4) and (6):
(7875.5)®

236,643.29 — oo

= 812.49

and the total sum of squares is caleulated from the totals of columns (4)
and (5):

(T8T5.5) _ ..
e - = 616270

242,593.50 —

The hypothesis 715, that the regression of ¥ on X is linear, is stated as
follows: .
m:¥, = a4 KX, - X) SO0 (1L
where 7, is the expected value of ¥ for X, the sth ya‘l‘fg,z of X. Tf Hy
is accepted, then Equation {11.51) may be Written '\’(j

Ve = a 4 B(X, —X) (11.55)

H; may then be tested in the cony entu{la} manner of testing a linear
hypothesis. We have

¢’ ”

Xt = ) ) (Y= 4 — By (11.56)
PRI

We then minimize x? Wit}} réébect to all parameters to get the absclute
minimum ¥2.  Thus: AL
(S‘ Ys&)

\‘
‘x3\= ZZ z (11.57)

AN/
which givesﬂthﬁé “$um of gquarcs within arrays.
We th £ minimize x* with respect to the parameters remaining under
the assufniption that H, is true.  Thus, minimize
o) N\ i,
® % =3 Y (Ya—a—bX - X (11.58)
t

\ }

with respect to @ and & to got the relative minimum, x2. We get

a= E%‘*Z Z Yo = T.. (11.59)
Yl -3 (3 v
b =2 d (11.60)

Y (X, — 27

]
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Then we may write

o (Z Y. (ZZ Ya)
Xi = Xa T+ Z y — 2:1

.

~ {H (X, —~ X) QL: YM)']}” (11.61)

E (X, — X)7]

[

2 N
=X§+X§;S&y doa .
xi is observed as equal to the “between means of arrays” sum{o?"&?quares
minus the quantity !, where g
- o ,,‘ ."I
X, - X s
(v -0 ())&
i = Z 7 (11.62)
[ne(Xs — X)7] (N
: 7\
We now test the hypothesis H1 by calellating
,xj.”"
O
NN 7o

and then refer to Snede:cogs tables of F (Table IV, Appendix) with
n=k— 2andns = E\%x— k.

£ 32
The componans;with the corresponding calculated values are then
entered in an‘aéa'lysis-of—variance table. The quantity ! is cntered as
the variation“duc to lincar regression” and xi as the variation “due to
deparfure/fibm linear regression.”
We now proceed to ealculate [ using the values recorded in Table 70,
fTOm:{’jﬁch we get
N/ _(#B270)° _ o0 g
b= 7046.68 08
Finally, the completc analysis in our problem is summarized in Table
71, For the test of the hypothesis Hi, we obtain
87.046
Fo = Y5004

We enter the P-tables with n: = ¢ and 7 = 252 and find that F, is
greater than the interpolated value of F at the 1 per cent level. There-
fore, we reject the hypothesis H1 and conclude that the regression of ¥
on X ig nonlincar in form.

= 5,15
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TARLLE 70
CALOUTATION OF THE VALUE OF {
Tie X, Xs -— _,'_{ E Yas (Xu - X}(Z:Ysc} ??.a{Xp. - JY)!
t
12 0.5 —10.6 318.0 — 3370 .80 1348.32
10 12.5 — 8.8 265.0 —2870.00 739.60
14 14.5 - 8.6 407 .0 — 2686 .20 609, 84
30 16.5 — 4.6 841.0 - B868 Al 634 80
41 18.5 — 2.8 11905 — 800580 27@.15
33 0.5 — 0.6 1016 .5 — 609,30 11.88
29 225 1.4 852 .5 1143.50 .‘\ ht. 84
30 24.5 3.4 919.0 128660 &™) 346,80
32 26.5 5.4 10258.0 2551.20 ’\\ 33,12
22 28.5 7.4 713.0 5276,,20 1204 72
10 30.5 9.4 325.0 30555000 883 .60
263 =211 ...... | ... .. : "‘%52,70 7045 .68
i NS L

- p
TABLE 71 /5™
ANALYSIS OF VARIANCE or Bcorms on Fi¥al/ Trsm—COMPLETE ANALYSIS

Source of variation R DIF. | Sum of squares | Mopan square
Linear regression. . ............ ., Q.’_f:, L 1 29.08 258,080
Depurture from lincar regression. ™% .. .. . a9 783 41 87.048
Within arrayvs. .. ... AN 252 5950.21 . 16.904
Total e 262 676270 | ......
LAN
A 87.016
F = = A.15
R’ Fo = 15901 = &19

The @ﬁé’methods could be used in testing the form of regression of
X on XN\

Pfoblem XI.5. The complete procedures for the analysis of variance

anfl_tovariance for the data of a single classification. In order to illus-

“tuate how to caleulate all the numerical values needed in a complete
analysis of variance and covariance in the casc of a single criterion of
classification, how to proceed with the application of prineiples including
the testing of underlying assumptions, and how to interpret the results,
application has been made to the following problem. We wish to
systematize the operations involved in the analysis in the most cificient
way.

The primary data are given in Table 72, which gives the initial and
fina! scores on a test of educational development, and the mental ages of
54 high-school students classified by grades, 18 students in cach of the
tenth, eleventh, and twelfth grades.
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We wish to test the hypothesis that educational development is
independent of grade, that is, that the mean achievements of students
in the three grades are equal. The complete analysis is in three parts:

In Part I, we calculate all the values required for the compiete
analysis and carry out the analysis of varianee on the final test seores;

In Part II, we give the complete procedures for the analysis of vari-
ance and covariance with one independent variable;

In Part III, we present the complete procedurcs for the analysis of
variance and covariance with two independent variables.

TABLE 72 N
MexTAL AGES, IxN1T1A7 AND TINAL BCORES 0N AN EntcaTionar DEVELorMENT TEST
or 54 Higm-BeHooL SrupeNTs CLassiFizp BY Grapr* 2\

7S

N
Grade 10 Grade 11 'C:r}a‘.cle 12
N
7 ~\’
Final M.A, Initial | Final  M.A.  Initial Ffﬁ.g} M.A.  Initial
Y X AR ¥y Xt Zy § e X Za
'\\\:
- 5

30 45 28 26 62 22" 29 60 25
25 58 22 26 57 N\21 29 88 24
22 46 19 24 65,4 v 21 22 64 19
26 56 22 24 5438 25 23 fi4 21
17 19 14 23 %5 18 20 47 17
14 29 14 15 a8 24 - 13 19 75 17
18 34 18 18 ™40 17 17 29 16
17 17 14 14 24 13 15 38 15
12 19 9 s 23 12 14 28 12
21 44 16 ¢ 26 60 22 33 94 20
21 44 2l R 25 57 22 29 89 29
19 6 17 23 52 19 25 78 22
20 38 @ 22 54 19 23 50 2i
18 27 (N6 21 54 19 18 57 19
14 18 I 14 17 52 16 7 43 17
11 £y o 19 40 17 15 36 13
12 % 7 15 28 12 15 35 4

% AN 7 13 48 12 10 11 9

N

“Mental age, in terms of months, has been reduced by 100, Deﬁne‘ Yo, X ot &I}d
Z. B/the final, mental age, and initial scores, respectively, for the _tt.h individual in
the sth group; where ¢ = 1, 2, 3, denoting grade 10, 13, 12, respectively, and £ = 1,
2, . ..,18

Parr 1

Step 1. Calculate the following values:
(Some of the values reported herc were caleulated for later use and

beed not be considered in the analysis-of-variance procedure.)

auzzjfgt:gowr - .- 481 = 6511
i
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Y ) (3 2
> ) ) S92 _ 15
N (Y 7
. (Z 3)( “) - OB _ g i
d (ZE ) — (958)° _ 91,123
54 ’ A
Y x.) R
ds ——H—(E ) (2379)° _ 104,808 K\
51 ’ WO
Yt “'Q ‘
dy = Q% ) {q.“) = 16,503 \\\9\
S‘ X, \
dy = (ZE )ﬂ(_‘ ) 1“(’83?@3}_ 7,051
ds = (Z; }«)-}(%“E/s) - ”m&(ﬁ = 18,670
0" ’v.

e
o
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!
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) ' _ 2379(914)
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/Qc = iz + @ + @z = 17,926

m"‘é z (YaXy) = au + az + aas = 52,000
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\/ = Z Yat’—‘s:) = dyy + (e 213 + dazr = 2[),11[3
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T f \\,\\
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It i vhvious that ™3

(5 S

Therefom, we h:@;v

Al
fh @y _."\l’i)' U8 A e
p &/ -
O !
AN\ \ -
Hy Q\ (1] E
L 3 e
R t
PR Y
N\ v
Wty — t'q 654 Mar
i’
3

T":rl‘I)

.

[Tse the Lop-erilerton Ly fest the- h_\‘pnthrw:\ H, -

caleulatinn= involve ] are sumnwrized i Table 73

7

:"\I\

N/

Q)‘

Step I Cubenlate the folloang vadues for the anal o o
of 4 The stms of squarcs for the ditferent sonrees o0 e
Laews Shepy |

1l Within grades = a, — ¢ = 150

2 Berween grades = vy — dy = 01

e Total =y — oy = 1507
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TARLE 73
Li-CALcUTATIONS FOR yias = @
: ; H
fx s 10]; s e lﬁg Tia : o, lOg e Ha ]Ug 8.
- ! — -
17 18 1.2553 . 498 2.6972
17 18 1.2553 L 364 2.5611
17 i8 1.2553 N . 681 2 8r i1 een
K . N
51 54 Zm log ns = 67.7862 | 1546 Z n log 0, = 145.6812
& ] ,\

log Iy = log N — S‘ n. log n, + w Z ns log 8, log }4 93\)

log 54 — 2 67.7862) + 4 (145 6812) — log T
17324 — 1.2553 + 2.6978 — 3.1892 0
9.9857 — 10 N

AR Y 968 v

Refer to Nayer's tables of Ly (Table V, Appen{hx) with & = 3 and degrees of
freedom f = 17. We have P > .03, Thereforeg;t\ accept 7Ty,  Assuming that the
three groups have common variahce, we may\Sothbine the resnlts.

II e

Step 5. Analysis of variance o test the hypothesis 772 ¥, = Y.
The results are summarized in Iable 74,

“STABLE 74
ANALYEIS OF VariakeENor FiNan 8corE For DIFFERENT (GRADES

S
7\ I
Source of variation W] Bum of squares | Mean square F Ilypothesis
a | tested
Within graded\& | 51 1546 30.31 o
Between grades 2 61 30,50 1.01 Accepted
Total 53 1607 :

,¥~‘ =)

: _ mean square of between grades
“‘hﬂ% F mean square of within grades
\ Refer to Snedecor’s tables of F (Tahle IV, Appendix) with n, = 2 and ng = 51.

We have P > .05, Therefore, we accept the ]1‘» pothesis H, and eonclude that there
arc no significant differences among the means of the three grades.

Parr TT

Complete procedures for the analysis of variance and covariance with
one independent variable.

Step 1. Caleulate the following values (see Part I, Steps 1 and 2):

(0 x)

E$§n=2X¥s“me=ﬂlz‘cag=4467
t
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(2, x)’
237%: = Z—th - —‘E"]“B— = Qs — €92 = 3272
T
P
(35
8

Zx§:=2X§:_ 1

=g — M4 = 1211"\

= {3z — (33 = 9255
f

(37 (%)
(2 Ygi) (2 Xa:) \E,\\\

(yozs) = ) (YouXu) — —* = ag4 — 604 = 906
2 2 18 R

Z (’ylﬂu) = Z (YRXR) —
t ¢

z"x\
3 o
_ _ 1 : \[1 s — 994
(yatﬂisc) = (YszX 3:) 18 \¥ 31 Cy4 2243
n t , X;} 4 .
From Part I, Step 2, we get i“,,;\
Z yi, = 498 R\
7 AN\
E yh = 364 )
7 A
Ey%t —~ 684 O
7 . Q
Then, we have o\
b )\/‘ .
5]
M, = NN _o(aziyr
L l —_— \ — -
O z aty 0
\\ i
\W [E (yzz.’iﬂ‘z;)]
N L4 _ (908 _ o,
, — = W
Z % 3272
i
2
[Z (ystxzt):’ (2243)2
E — ‘ — =
My = = gms o
z ferTs
t
Deefine

Adjusted Y vk = Z (Yot — bozar)?
H t
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E (yetitar)

&
2
Z e
t
By simple algebraic operation, we have

[2 (sitsa) ]2

where b, =

Adjusted 2 Yo = E?"g‘ =Yy - M,
] £ Z x} 7
¢ O
Define R
¢\
&t = adjusted Z Yo o %
‘ l”.}
Therefore, we have A \
AV
6 =Ey%z—Ml=170
t :"\\.;
% = Ey%a —~ M, =113 R
’ \Y,
b = Zy%; — Mz =140
¢ SN

Step 2. Use the Ll-criterionffc; ‘test the hypothesis H{:ay.., = 0ys
The caleulations involved@re summarized in Table 75.

N\
N, TABLE 75
L-CALCULATIONS FOR Hy'toypny = 04z

£ s \Jog 7, nologn, | 6/ log 8./ s log 85
AN, | SR N
P \W i 1
16 18\J; 1.2558 " 170 2.2305
16 (s 1.2553 . 113 2.0331 |
16 w318 1.2553 140 21481 | ...
SN j— . o N v L B
'<8\’ . 34 Z s log m. = 7. 7862 423 E n, log 6, = 115.7346
) 2
3 &

log L = lo ?\T—l ns lo n—i—i iy Jog 8" — lo (\19’)
g 1 FL I\" & g 1y _Nr ol g ] 3?,' L( &
& 8 8
= log 54 — & {67.7862) L+ &5 (115.7346) — log 423
= 1.7324 — 1.2553 4 2.1432 — 2.6263 = 9.5940 — 10
s Ly = 956
Refer to Nayer's tables of In with & = 3 and degrees of freedom f = 16. We
have P > 05, Therefore, we accept H, and combine the results.

Step 3. Calculate the following values for the analysis of variance of
y and z and the covariance of ya (with « held constant), The sums of
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squarcs and of products for the diffcrent sources of variation are (see
Part I, Step 1):
Zyt = a; — ¢ = 1546 = A,
(1) Within grades: { 22? = 4, — ¢, = 16,004 = B,
Xyr = a4 — ¢4 = 4360 = I}y
Zy* = —dy =61 = A4
(2) Between grades: { 22 = ¢; — de = 5837 = B
Zyr = ¢4 — ds = 504 = D
Ey2=a1—d1=1607=A
(3) Total: Zpt = gy — dy = 22,831 =5 Q
Zyr = as —ds = 4054 = D A
- {
SBtep 4. Caleulate bZyzr for “within” and “total” where bIyx

_ (—\J.T)’it}g_ P
e ..‘.t N
Refer to Step 3; we have &
o D v
(1) Within grades: bZyz = B—“ = 1119 = Ma\\j
o K¢
2 - N
(2) Total: bZyx = % = 10755 M
Step 5. Caleulate adjusted Ey{‘,fg':lr- “within” and “total,” and
reduced Zy? for “between.” N\
(1) Within grades: Ad_just;ed"ﬁ}_i;’ = Ay — Mo =427 = Py
{2) Total: Adj}}i’ﬁcd =4 - M=852=r

{(3) Between grades: P@d,uced Iyt =P — Py = 105

Step 6. Analysis bf variance and covariance to test the hypothesis
HL: ¥V, = Y with )i:"held constant. The resulis arc summarized in
Table 76. O

P & TABLE 76
ANALYSIE OF y\\ismlwcm AND COVARIANCE oF FINAL ScoRrE wiTH MeENTAL AGE Hewp
O\ CONSTANT
., »\ ) | Adjusled or reduced
qurke of DI | =y® | Zz* | Zry
varation ) . l .
DF, | 88 |AM.5 F | Ilypothesia

Within grades 51 | 1546 [16,904) 4360 | 50 | 427 | 854 ... L.l
Between grades 2 61 | 5837 594 | 2 | 105 52.506.148 Rejected
Total 33 | 1607 |22,831| 4954 | 52 J 532 ‘
|

Refer to Snedecor’s tables of F with n = 2 and n, = 50. We have I < .01.
Therefore, we rejeet the hypothesis Ho' and conclude that there are significant differ-
ences among the means of fnal scorcs for these three grades with the effects of mental

age partialed out.
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Parr III

Complete procedures for the analysis of variance and covariance with
two independent variables.
Step 1. Calculate the following values (sce Part I, Steps 1 and 2):

zzn 27 _(EZ”)

= {f13 — 13 = 534

e 3 O
Zzgt ) Zzzi ) Q‘:f) S—
L ) = 2, (Vaa) - G ”) (E ng_ —
Z (yan) = 2 (YaZo) — — th) (E J%) = a5 — o5 = 301

& Ya=) (E s)

Z(ywzat) = 2( Y 3:) \————-— = g5 — g5 == 582

Sms - L, - G ()

= 15 — C156 = 1190

= @dag — Lug = 731

Z@m@fg’gzw_(ixg(gég

RS
(2 xw) (3 2)

\)2\ [ (zyzm) = z (X3 Zy) — ‘—t—i—-*—-— = ay — c36 = 1961
From Part T, Step 2, and Part I, Btep 1, we also have

Z ¥l = 498

t

Y vk = 364

L

Ey%: = 684
?

z%=ﬁw

it
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Z:c%t = 3272

4

ng‘ = 9255

i

E (yuzy) = 1211

t

E (9211?32:) = 906

¢

E (yaxs) = 2243
]

Then, we have

M= :
E f.";u Z ZH — [Z (xlx.le)_I M'\'\'
_ 534(1211)* ~ 1100(402)(1211) O -
1767(534) — (1190)* D
_ 783,122,214 — 709,016,280 _ 7&;}95,934 e
969,278 ~(ot0,278 !
Zzzc [E (921321)] E (\htﬁzt 2 (3]25321) S‘ (jztxm)
M) =

D E N

 981(906)% — 791§01)(906)
3372028 (751)°
_ 230,654,916 — 204,802,206 _ 25,852,710 _
355,431 355,451

%3\3:\[2 (yaexss)] Z (.’1:33.33;) E (yarzae) Z (yartar)
ML =¥ : t :
'j‘f" szt Z 25 — [2 (waar) ]

'\
™ _ p2a(2243)* - 1961(582)(2243)
0265(524) — (1961)?
_ 2,636,269,676 — 2,550,940,386 _ 76,329,290 _
1,004,099 1,004,099

AN (yuzu)] Z (su) 3, ) Y ()
NI =1 : t
SAYa - [Jen]

4487(492)? — 709, 016,280
069,278
_ 1,081,209,8%8 — 709,016,280 _ 372,283,608 _ o0,
969,278 © T 069,278

Z s [Z (ynxlﬁ)r — Z (z1z1) 2 (31211) Z (yiu’i::ii}} "

257
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Ex%‘ [Z (ymzm)T - Z (Tazo) Z (Yortar) E (yauzu)

N = - : LA —
’ 2 :Cg‘z 2, — [Z (2u2a) ]2
{ t ¢
_ 3272(301)% — 204,802,206
- 385,431
_ 207,431,344 — 204,802,206 92,629, 138 — 961
- 355,431 356,431
E 5 [z (?fatzas):lu - E (2aEa) E (Yartse) 2‘ (aza) o O\
:\I.']é — i 3 . H ] _ ¢ A .
Z x%; Z zgt — [E (-’173;23:) J2 \' \"..\
t i t . \J
_ 9255(582)2 — 2 559,040,386 N
B 1,004,099 D
_3,134,890,620 — 2,559,940, 386 _ 5?—'1’,95)),234 — 573
B 1,004,099 1{00‘1,099 e
Define ‘xﬁ\\"

W

Adju&ted Z Jgg = Z (y.gl - balxst —f ;Zza!)

Z stz (ystxst) z (5e2t) z (Y se2ae)
E:M {Qt: l:z (Isrzst):r

Ercf&:\ (‘yaazaz) - Z {(sc2ee} E (3 ete)
N YA YA (Y]

]

whore b, =

A
By tr@ﬂjlesome algebraic operation, we have

Adgusted i EJS, - Ml - N1
4 \ o b

Deﬁne 8 = adjusted Z v
¢
Thercfore, we have
# = )k — M} = N =
!
= Yk — M~ N = 30
t

0y = ) vt — M} — N} = 35
I
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Step 2. Use the Li-eriterion to test the hypothesis H 0y 0z = 0y.za
The calculations involved are summarized in Table 77,

TABLE 77
L1-CALCULATIONS OB H\ 10,000, = oyax

fe n. | logn, ny log n, 8.’ log 2. s log 8
- _
15 18 1.2553 .. 38 | 1.5708
15 18 1.2553 30 | 14771
15 18 1.2533 o 3 | 1saa1 | LN
i L
. ] RN
45 54 E nlogn, = 67.7862 | 103 | ) n.log o, ©82 8180
| D\

¢ 7

i x Ly =1 Fi B E l()g + § 2 Iog \. ‘M\ .( ”)
a = T s T £l s ViOE
. ! 02 N \‘ Lt !

2

= log 54 — & (67.7862) + 7 (82.8180)/16g 106
= 17324 — 12553 + 15337 ~ 2,018 & 0.9980 — 10
L] = 995 " ‘.

TReofer to Nayer’s tables of Ly with & = 3 and dogrees of freedom f = 15, We
have P > ,05. Therefore, we accept Hi'/ :md combine the results.

Step 3. Clalculate the nee Bbbﬁl‘y Vallle for the analysis of variance of
z, ¥, and z and covariance of gt} vz, and xz (with both x and z held
constant). The sums of bqusq'es and of products for the different sources
of variation are (see Pa\l‘ Btep 1 and Part 11, Step 3):

Oh Zy? = 1546 = Ao
SOl =xt = 16,994 = By

A Y w0 = 1330 =
(1) Withip&fades ¢ o ° ~ 4360 = p,

.J\\w. Syz = as — ¢ = 1375 =
N Ser = as — ¢ = 3942 = F,
~O Sy? = 61 = A;
\ / Za? = HR3T =

St =c;—ds = 84 = C)
Syr = 594 = Dy

2yz=65—d5=71=E1
Saz = ¢ — do = 097 = Fy

Tyt = 1607 = A

s2? = 22,831 = B

Zot = az —ds = 1423 = C
Tyr = 4954 = D

Syz = a5 — dp = 1446 = F
Sxz = as — dg = 4639 = F

(2) Between grades

1l

1

(3) Total
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Step 4. Calculate b1Zyz and b:Zyz for “within” and “total”
b _ Z2?(Jyx) ZazZysZyc

12“ T 323zt — (Zaz)?

b _ Za?(Zyz)*ZxzZycZye

gEyz T Zx?Zzt — (Zrz)?

Refer to Step 3. We have

where

. . D}~ FoBoDy o
(1) Within grades. blzyx = W = 2h2 = lfn
bzzyz = —B“gagf?"'g;’g” = 1178 = NN
" —_
Total: blzya: CIé'C—_—FED = 154 =,_:1j'1‘".\

: — FDE N\ L
b ) e = P - R A

Btep 5. Caleulate adjusted Zy* for “witﬁ‘l}” and ‘“total,” and
reduced Zy? for “between.”

N
(1) Within grades: adjusted Zy? =.{Q ML~ N = 116 = P}
(2) Total: adjusted Zy* S\4 — M — N = 130 = P!

(3) Between grades: redueced Zyr ~'P1— Pl =

btep 6. Analysis of variance: and covariance to Teqt the hypothesis

/:Y, = ¥ with both X and_ Z B8ld constant. The rosults are summa-
rlzed in Table 78. . N

S TABLE 78
ANALY818 OF VARIANCE AND' é‘ovamnncr or Finar Scork wITH Bora MaNTar Ace
Arm ‘INITIAL Scork TTrnp CoONSTANT

.\’ Adjusted or reduced
Souree of | T4\ .
variation 'F\.,.\Ey* La® | 22t | Zyz | Zyz | Zae

W\ D.-| 8- |M.-| . | Hypoth-
X s’\\ : F.l A | 8 F esis

‘0\.0

AVithin

grades | 51 | 1,546 16,994| 1,339 4,360| 1,375| 3,042 49 | 116[2.37|. ..

Between

grades | 2|  61) 5837) 84 594 71| 697 2| 14/7.0012 95 Accepted
1

Total| 53 | 1,607| 22,8311 1,423] 4,954) 1,446( 4,639 51 | 130

Refer to Snedecor’s tables of F with ny = 2 and ny = 48, We have £ > 05. 50
we aeeept the hypothesis Hy” and conclude that there are no significant differenees
among the means of final scores for these three grades with both the effects of mental

age and initial score partialed out.

Analysis of Variance in the Case of Unequal or DiSproportionafﬁe
Numbers of Observations in the Subclasses. The analysis of variance I
the case of a single eriterion of classification with unequal numbers in the
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gubclasses introduces no new difficulty as has been indicated in Problem
XI1.2. However, when our data have been classified on the basis of two
or more criteria with unequal subelass numbers, new difficulfies arise.

In agriculture and in other cxperimental sciences it is usually possible
to design an experiment so that each subclass has always the same number
of individuals, If this were & necessary condition, the use of the powerful
tool of analysis of variance would be greatly restricted, since there are
fields, such as those dealing with human beings—education and psy-
chology, for instance—where unequal representation in each cell of
multiple classification of data is of common occcurrence, both in .cxperi-
mentation and in other ohservational programs, including data gollected
by governmental and state agencies. There is an urgent nded, there-
fore, for a systematic formulation of methoeds of attacking pl'@l;lems when
unequal representation in the subclasscs oceurs. Metliods have been
developed for such problems (Refs. 8, 9, 10). < fo,

Tsao (Ref, 10) has treated the problem of anslysis of variance and
covariance for unequal or disproporfionate reprefentation in the sub-
¢classes by giving the mathomatical solut-iag.’ﬁ‘th the specified restrie-
tions defined and by proposing new appteximate methods with the
respective statistical assumptions to be(fulfilled. Our consideration of
this problem is limited to the preseni;aﬁgﬁ of an approximation method of
analysis for unequal represcntatiqg'i;ri the subclasses of two classifications.

Problem XI.6. An approximation method of analysis of variance for
unequal frequencies in the, subclasses of two classifications. We fake
the problem of testing twa\lypotheses: (1) that the grade means on a
specd of reading test ! tevequal and (2) that the school means on the
reading test are equal, The basic data for the fifth, sixth, seventh, and
eighth grades insedach of two schools are given in Table 79, including the
appropriate notations. The complete analysis of the problem follows.

$) TABLE 79

C‘-ALCUL({'L\W“ MEasURES FoR SPEED ScoRe N Gares Respiva-SurveEY TEST
, \ 3 _ , ngﬂ = E (X“ . X'M,)g
< thbol Grade et X g s i : i
5 41 49 .68 12.53 6280
G 30 41 .08 11.28 4335
A 7 32 42.41 9.99 3004
8 36 53.25 10.5% 3925
5 26 33.062 12.47 3388
6 a7 20.22 11.02 3157
B 7 34 32.50 | 10.00 3300
8 32 40,53 9.84 3002
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1,2, 8, 4 represent grades 5, 6, 7, and 8, respectively
1,2 represent- sehools A and B, respectively
I
o 18 thf‘ number of ohservations for the sth grade in the 7th school
X.“ is the mean score for the sth grade in the ith school
¢ i3 the unbiased estimate of standard deviation for the sth grade in the
schoo!
X and ¢ are obtained by the following definitions:

ZXM'J
=1 .
n, H

where 8
e
t

|

Step 1. Use eriterion L, to test the hypothe%ig Hi';i},- = a.
Let us define: \

8;; = sz‘t z (X-nt — )L )2
\

The ecalculaticns for L, are summarized ;m}Table 80.

TABLIASD
L-CaLcuLaTiod®wor Hiiow =«

XI

ith

£ T Y
e

T st log e gy log 7 8 ¢ log 6% e log &

40 a1 1 6123’\ 6,280

38 3 &0l 1 4,835
31 32 ,1, 5051 " 3,094
35 36 L5563 e © 3,025
25 26 N 4150 L 3,888
26 2N 14312 | . 3,157
33 344 1.5315 | 3,300
N 1. 3,002

K -

adhl ! .
N 56T Z Ties 10g fe = 408.0397
2N\ -y

L7980
6844
L4905
HB38
L0807
41993
L0185
ATT4

LR VR R I WL R R

s

ﬂ'\\’ "’:
S

The harmonic mean of f;

_ 8 _
E+38+ + + + +
.8

_253168_3160

log Ly = log N — Zns., log 1. + z 7.4 log &, — log Z 2

= log 267 — 757(408.0397) + 55+(959.2015) - log 31,481
= 24265 — 1.5282 4 3.5036 — 4.4980 = 9.9939 — 10

31,481 Znaﬂ log &' = 959.2015

wl
—_
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Therefore, L; = 986. Refer to Nayer's tables of Ly (Table V, Appendix)
with & = 8 and degrees of freedom f = 31.60. We find that P > .05.
Therefore, we accept I7;. We may assume that the eight groups have
a common varianee, and combine the results,

Step 2. Use the y?-criterion to test the goodness of fit for the equal
frequencics in each subclass. TFirst caleulate the mean frequency:

& = 36—{ = 33.375. The results of the x? test are summarized in

T=3 78
Table 81. )
\
TABLY 81 .
(AT.CULATION OF x? A\
_ 3
71 iz
fo 2 5o =) (=50 AL o
~AS
41 33.375 7.625 58 NA0B25 1.7420
39 33.375 5.625 31630625 0.9480
32 33.375 1.375 L, {714.850825 0.0666
36 33.375 2. 625 W\ 6.890625 0.2065
26 33.375 7.375 Ay 54.390625 1.6297
27 33.375 6.375, 40, 640625 1.2177
34 33.375 0.625% 0.390625 0.0117
32 33 .375 1800 1.890625 01, 0566
267 267.000 | &y xof = 5.8688
We find o)

"\\" X3 = 5.8088

Refer to x-ta,b}e with df. = 7. We find .70 > P > .50. There-
fore, we conglude that for our data the class numbers do not differ
significantly™ Tt is justifiable to use the approximation method.

Step 3\ Convert Table 70 into a table with equal frequency of 33.375

for eachisubelass,
Refalllmg the original estimate of the standard deviation, we have the

fo *.-\-mg cstimates of E €yt

3‘3 375

Dt = 37 (3588) — 491
4

l}.é

33 37
Thor = 33 37" (4835) = 4138 Z a2, = o2 (3157) = 5902
3

L
]
;E“’ _33375
:

33 8:5
Tat (3094) = 3227 Zmﬁzi = (3300) = 3239

_ 33 3;0

33 3:‘0
Ty (3926) = 3639 ng“ 5 (3002) = 3131




264 APPLICATIONS OF THE ANALYSIS [Crar. XI

These results, together with the data in Table 79, urc summarized
~ in Table 82. The notations are the same us in Table 79.

TABLE 82
ExpECTED MEASURMS FOR SPrEpD Scork in GaThs Ruaning Burvey

.
School Grade n X, i Z Lhoit
£

) @) 3) @ | ®

5 33.375 49.68 12 .53 (12

A 8 33.375 41.08 11.28 AN\ 4,138
7 33.375 42,41 9 00 NS 3227

8 33.375 53.25 10,3 3,639

5 33.375 33.02 | A02.47 1,991

f 33.375 29.22 | (OIL.02 3,002

B 7 33.375 £2.50 NN 10,00 3,230

8 33.375 40 53N\ 9.8 3,131

N\

Step 4. Caleulate the diffcrent I’mids of mean scores. At least
6 decimal places should he carried out; if possible. The diffcrent kinds
of mean scores are given in Table"83.
S TABLE 83
Dyrrogbyr Kinns oF MuEaN Scorss

A
. 7, \.,.
\ ) ’1\ 2 3 4 X“,
NO
1 x.\’..749.68 41,08 42.41 53.25 46.603
2 AL 83.92 29.22 32.50 40.53 34.0425
X

\\ 41.800 35.150 37.456 46,890 40.32375 = X

2 8

NS

»\;':,\St'ep 5. Caleculate the following values:
a = NX?, = 267(40.32375)% = 434,143, where N = 8n
¢ = 2n Z X2, = 66.75[(41.800)2 + - - - + (46.890)7] = 439,503

d = 4n E X% = 133.5[(46.605)2 + (34.0425)2] = 444,678

e=n E D X% = 33.375[(49.68)2 + - - - + (40.53)7] = 450,324

Step 6. Calculate the sum of squares for the different sources of
variation:
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(1} Within subclasses: 2 E Z af, = (81124 . -+ 4 3131) = 31,379

[Refer to Table 82, column (5]
(2) Interactions: nE E X% — 20 X2 —~ dn Z X+ NX2 =¢—¢

—d+ a = 286
(3) Between grades: 2?12 X —NX* =c¢c—a = 5360

(4) Betwcen schools: 4n Z X2, — NX* =d— q¢ = 10,535 |

1

(5) Total (1) + (2) + (3) + (4) = 47,560 O\

Step 7. Analysis of variance to test different hypotheseg\ First, we
wish to lest the hypothesis H,:Xu — X = Xa — Xw =Xy — X
= X4 — X.o; or that there is no interaction between grade and school.
The results are summarized in Table 84. It is note‘d that if we have p
grades and ¢ schools, then the degrees of freeddit for each source of

variation are as follows: \'
Within subclasses vl x\
Interaction Uy — 1)(9’ —1)
Between grades ,:,’:L p—1
Between schoolse 3% ¢ — 1
Total ™ N -1

The additive property ef \degrees of freedom is clearly demonstrated.
From the resulis in Fable 84, we may accept the hypothesis that the
interaction is not significantly different from zero. Therefore, we may
pool the sum of gquares due to ‘“‘interaction” with “within” sum of
squares, as wellws the degrees of freedom. We may call this sum *‘resid-
ual™; it ¢ "[)o used as the basis of testing the other hypothesis. (Note:
If the ln‘rﬁ\actlon is significant, we do not pool it with ““within.””) Next,
we wigh“to test the other two hypotheses, namely, H; X=X, =X;
—-X; and H{7:X., =X, The first hypothesis is that there is no

e‘lence between the four grade means. The second hypothesis is
that there is no difference between the two school means. The results
are summarized in Table 85.

TABLE 84
Rusyrre oF TEsrise THE Hryrorupsss I
Bource of variation D.F. B8 M.8, Hypothesis
Within subelasses 259 i 31,379 121.15 | ...eenes
teraction 3 286 95.33 Accepted
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TABLE 85
ANALYRIS OF VARIANGE FOR SPEED ScorE IN GateEs REapivg Survey
Souree of variation D.F. 5.5 ALE, F ; Hypothesis
Residual 262 31,665 120,86 | ... | .......
Between grades 3 5,360 1,786,606 14.78 Rejected
Between schools 1 10,535 10,535 .00 87,17 Hejected
Total 266

I’rom results in Table 83, we reject both the hypotheses H a.r}d HY.
Therefore, we conclude that there are significant differences hghween the
means of the grades and that there is also a significant, dllTi\r‘cnr'e between
the means of the schools. N

PropreMs D
1. Ts there a significant difference among the meam\of reaction times for
age and for sex?

Reaction Tives 1IN SEcoNDs TO LisnTt Axn SOUNﬁ‘Q\*‘. Ar10us Age Grorrs (4-60
YEARS) ACCORDING, TQ SEx

N

>
NN

Male W Female
Age Light Bound ’ Light Sound
group | o 24 N
Mean 8.D.* ’\‘Mcan 5.D. Mean 8.D.¥ | Mean BS.D.

€ 3
28 B J—

S

10F .34 N1070 | .34 0028 | 10 .82 ,1644 | .59 .1890
107 .24N\/0400 | .23 0400 | 10} .32 .0340] .31 0407
101 2267 0331 | .19 .0338| 10| .26 .0192| .20 .0736
10 ~26° 0465 | .24 0141 | 10| .34 0378 | .30 .1139
100627 0266 | .25 0487 ;1 10| .36 .0342 | .30 .0372
lay/ .38 0574 | .37 0806 | 10 | .44 0721 | .42 0842

HEG O

!

* &t:tndqrd deviation, Pearsonian.
g@ix}e & complete analysis of variance for the following data:
S ;

PORTED TESrs WITH STANFORD AcHIEVEMENT TEsT BarTrEry 1x 1924 (Dars
FROM BALDWIN)

Age Number of Meun Unbiased 8.D.
CASCR

9 100 27 .4 10.18
Boys 10 117 37.9 11.63

il 96 44.2 1205

9 115 29.1 10.76
Girls 10 126 38.3 10.52

11 g7 44 2 11.04
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3. Test the significance of the differcnce between the means of students in
arithmetic computation in the diffcrent types of schools, Grade 4.

AriTEMErIc COMPUTATION ScORES By TYPE or ScHoon
{After Peterson, 1948}

Frequency ‘
Joore
interval Total
Boarding Day Mission Non-res. Public |
i ! N\
A85-59 (] 1 0 0 0 1
50-54 1 1 0 0 0 ,w; N2
45-49 4 3 0 1 1 AN 8
4044 4 0 1 0 15 ¢ W 30
35-39 41 60 29 g Y 228
30-34 84 146 48 i7 , 280 ¢ 526
25-20 80 148 31 17 8222 408
20-24 69 166 30 16 ;129 410
15-19 s} 165 24 12 123 395
10-14 48 130 11 INY 62 269
59 a7 08 8 {8 47 196
0-4 t1 36 3 X 19 74
Total| 454 964 185 L) 90 939 2632

S

4. The data on the following page! were obtained from the administration
of two tests to a random samplc of 132 students in a class in college
biology, Test 1 was deipried to measure the acquisition of funda-
mental facts and prlnﬁpies, Test 2, to measure the ability to apply
a knowledge of facts\and principles.

Problem: Test, tbg"[mearlty of regression of scores in Test 2 on scores
in Test 1. AN
&
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Student Seore on Student Beore on | Student | Score on
No. Test 1 Test 21 N0 [Test1 Test 2| No- {est 1 Test 2
1 63 34 45 63 34 89 53 27
2 71 42 46 83 44 g0 49 929
3 70 41 47 80 52 91 90 49
4 119 50 48 89 49 92 69 31
5 109 57 49 08 34 93 52 a7
6 75 30 50 73 35 04 40 41
7 88 33 51 65 30 95 g2\ 40
8 83 55 52 62 30 96 90 37
9 68 20 53 114 54 o7 ¢\1bs b4
10 59 35 54 105 30 98 (VN 83 40
11 55 43 35 88 35 RN 98 a7
12 106 47 56 78 19 | 7200 61 18
13 56 35 57 69 LN 101 80 39
14 81 51 58 67 e\ 102 70 40
15 102 48 59 79 29 103 60 30
KPs)
16 04 43 60 80\ Va8 104 66 34
17 97 40 61 i 105 71 31
18 84 30 62 ‘63 42 106 85 46
10 91 51 63 %\ 93 44 107 43 2
20 85 41 64 o) " 78 37 108 65 32
21 106 49 “35* 51 34 109 53 35
22 86 49 L2\, 66 02 46 110 88 43
a3 104 41,8 67 76 36 111 68 41
24 78 dﬁr 68 105 57 112 93 46
25 01 g B8 55 32 113 91 47
26 827, 43 70 86 50 114 101 56
27 w4 34 71 .11 30 115 o4 40
28 N 38 72 70 31 116 91 41
20 ()787 4 73 68 28 117 73 33
30T 30 30 74 81 30 118 g9 47
N 75 16 75 81 48 119 0% 45
~\.J32 73 41 76 65 39 120 66 40
NS 33 59 43 77 104 49 121 78 40
3 o1 48 78 88 43 122 56 a7
35 80 52 79 78 32 123 03 48
36 105 59 |0 84 40 124 85 a8
37 97 43 81 92 47 125 58 36
38 77 a9 82 84 35 126 92 43
39 124 52 83 78 48 127 75 31
40 638 34 84 66 25 128 66 27
41 101 49 85 94 53 129 6y 4
42 81 34 86 52 39 130 111 50
43 69 44 87 61 38 131 73 35
44 73 40 88 96 43 132 73 41
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B. Anulyze the following data cbtained for Indian students in the
twelfth grade showing scores on an arithmetie test and the number of
schools attended (after Peterson, 1948):

Numbher of schools attended

Arithmetic
coTn, yoore

1 3 4 Cver 4
95-100 0 1 0 0 gl
o0- 04 0 0 0 0 N
85— 89 0 0 0 0 Y.
80- 84 0 0 0 0 N D
75— 79 2 2 2 4 o0
70— 74 18 16 13 16 9
65~ 69 12 39 20 L2 20
60~ 64 15 56 30 A4 8
55— 59 14 48 23 \ 18 18
50— 54 8 46 22 \ 13 13
45~ 49 2 30 21 v 10 8
40~ 44 2 16 19~ 13 ]
35— 39 3 17 9 5 3
30- 34 1 b »7 7 0
25— 29 0 7 3 0 i}
20~ 24 0 3. 1 0 0
15- 19 1 20N 1 0 0
10- 14 0 NN 0 0 0
5 9 0 N\ 1 1 0
0- 4 0 AR 0 0 0
Total 1 78 i) 290 172 130 85

8. Testthe signiﬁca;ﬁcé of the difference between the means on the achieve-
ment test ofsbhe experimental and control groups after adjustment bas
been mad€ Tof any inequalities in the two groups with respect to pretest

and I.@N'scores,

eng\.rfi’ihent to cvaluate the effectiveness of
ing A unit on Communication in the sixt
“sghools (Clark, 1938).

The data on the following pages derive from an
the sehool excursion in teach-

h grade in eight elementary
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Privany Dara vor ScHooLs Comrrisie CoNnTRoL Grours
st . ] ;
Individual C.A. MoA P;(‘:J;:t | Tn;sérlest
1 13 117 23 31
2 146 146 34 50
3 148 129 40 44
4 142 142 41 51
6 143 138 40 53
7 141 140 24 38
8 157 145 a7 30
9 139 142 32 ST\
10 141 152 32 49
O
1 145 158 47 AN\
12 143 144 38 DA
13 146 138 39 50
14 144 130 28 £ 44
15 143 169 36 ¢ 4
18 147 155 ) 48
17 143 158 N1 58
18 148 124 AN 15 26
19 151 119 (Y 46 53
20 138 172 O 51 56
21 140 147\ 34 50
22 143 1458° 35 40
23 146 q;ﬂ 20 37
24 161 147 24 31
25 142 " Y16 39 46
26 145 {\ 171 44 58
27 ur 141 32 49
28 134\\” 145 34 52
29 151 141 33 45
30 s 148 39 43
. \ J
31 oy 138 161 29 42
32 \:" 146 141 29 42
33 N\ 175 142 28 48
31 N 144 145 ” 39
&y 150 127 24 33
\”\’3‘7 144 123 22 29
/38 158 134 24 40
39 134 157 55 56
40 142 149 27 37
41 140 140 41 52
42 145 146 13 46
43 146 134 37 46
44 145 152 38 45
45 144 150 54 59
46 157 147 35 45
47 154 145 36 52
48 139 195 16 33
49 145 135 26 38
50 143 150 a7 43
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Privany Dara ror SceEoors Comrrising Contaon Groups (Continued)

5 _
Individnal LA, ALAL Pretest Final test
— — 3eore eore

hl 171 124 11 05
52 151 i54 35 29
53 163 149 36 44
Hd 146 148 25 30
53 139 155 35 50
56 149 137 27 a5
57 142 128 14 25
58 90 147 33 36

59 140 154 a7 BN
60 141 143 28 40
\)
61 146 128 8 P\ Y
62 145 146 40 N6
63 148 152 49 T 59
64 142 136 20 I 44
65 160 140 A 40
66 142 154 23 ) 40
67 145 157 N1 55
68 146 159 N 57
69 143 136 R 43
70 146 139 2O 40 37
71 143 145« 21 38
72 144 Jeh 40 47
73 145 RS 1 37 45
74 146 WO 146 27 3
75 145 A 18 8% 51
76 155 &N 160 29 42
7 143 .8 145 32 49
78 158\ 126 17 31
79 139 142 23 34
80 o _ 152 30 43

AW
81 141 166 26 38
g2 ™ 134 155 33 44
83 § 142 146 34 39
g\ 137 151 35 46
88% 140 142 26 42
(%6 138 161 37 48
) a8
) 87 150 142 28
88 143 155 38 41
89 143 187 19 34
iy 143 151 27 40
91 143 150 25 40
92 143 146 42 51
93 162 131 34 51
94 154 143 43 57
95 158 132 38 43
a6 144 149 4? 55
97 148 138 35 45
98 145 149 49 67
99 145 147 40 53
100 141 1687 56 i
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Poimart Data vor Scuoorns CompRISING CoNtroL Grours (Confinued)

. , . Protest IFinal test
Individual C.A. M.A. . S00TC score
i
101 142 146 32 49
102 141 144 49 62
103 145 141 37 a4
104 144 141 46 61
105 139 132 28 35
106 o143 139 38 a6
107 143 150 40 53
108 143 149 36 NG 50
109 142 135 2 L\Y 83
110 144 145 21 \J 43
111 148 157 AN 52
112 139 147 e/ 52
113 151 124 O it
114 141 129 \\ 49 50
115 150 134 N 39
116 145 142 0 42 33
117 147 141NN 41 a6
118 142 4NV 38 47
119 162 151 34 48
120 184 o3 23 44
QY
121 151 N 128 31 64
122 140 % 138 37 47
123 141 A 141 33 44
124 148\ 134 22 32
125 qﬁ{ / 164 47 58
126 N! 126 26 a8
127 WAJL41 147 42 58
128 WO 144 152 56 34
126 N> 149 137 24 42
130 .4 140 157 47 61
£ 3
3L\ 133 121 38 52
o N
N\
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PrivarY DaTa ror Scuoors Covrrising EXPERIMENTAL CIROUFS

Individual CA MA Pretest TFinal test

- BCOTE score

1 145 145 29 48
2 155 154 41 51
3 137 159 47 62
4 138 148 41 54
5 142 156 44 62

6 148 169 41 IR
7 118 163 49 62 |
8 144 146 52 265N
9 147 150 47 NG
10 145 149 40 \ W 54
z’n"
11 146 137 4 AN s
13 140 142 12 ¢ 55
13 147 148 41N 5l
14 146 153 44 57
15 143 134 N 432
16 140 153 ¢f{r29 44
17 142 140 AN 29 42
18 149 156 AWV 39 49
19 189 152 o W 41 56
20 142 149,38 37 50
21 141 33 24 39
23 138 151 35 51
23 j44 »{ 142 26 45
24 130 L\ 18 38 50
25 142 ¢ ¢\J 154 43 58
2 143 XN 138 28 50
o7 141N\ 144 35 bb
28 12 151 32 53
20 AN46 153 32 42
20 ON137 150 17 57
\Y

8L N 13 158 38 52
32 N\ 187 163 44 53
3309 137 160 45 60
4y 148 143 28 45
\’gﬁ" 150 142 38 49
56 140 156 32 63
37 127 174 45 54
38 141 143 36 57
39 143 155 41 51
40 139 159 45 58
41 148 142 85 9
42 146 137 30 52
43 145 146 39 50
44 138 146 44 57
45 140 140 a6 53
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Proary DaTa ror ScHoors CoMPRISING FxreriMENTAL GROTPS (Confinued)

el T
I I = e
46 141 149 30 48
47 153 150 27 46
48 144 156 33 40
49 145 166 44 a3
50 187 169 20 45
52 45 130 30 ”.'\\..;. 44
53 140 159 32 O 45
54 141 155 43 A\ 57
55 156 140 YR 52
s 139 149 0 -
57 140 152 \ 3 a7
58 143 138 N30 4
29 145 45 N a2 16
it 145 140 ,\:{' a8 55
| O
61 | 140 1@0‘..} 50 6
62 146 ol 23 41
63 140 N7 36 30
64 139 W62 47 59
65 Uy N 143 a7 52
68 143 147 19 61
67 141 ~~~\\ 137 34 45
o8 iﬁ\‘ 143 26 49
69 N 142 34 50
70 LA57 120 17 a1
N
71 N> 139 152 11 48
72 146 141 25 43
N 139 164 39 55
\‘7 JE' 129 186 358 45
(N6 145 163 40 52
NWTT 139 151 15 26
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7.

Analyze the data in Problem 6, using the Johnson-Neyman technique
and setting up the region of significance if it exists. Contrast this
technique with that of analysis of variance and covariance (see Ref. 6).
How can the analysis of Hriance technique be used in problems of
estimation, that is, in the deteclion and estimation of components of
random variation associated with a composite population? (Sce
Ref. 1.)
References N\

. Crump, 8, Lee, ‘The Lstimation of Variance Components in Anﬁi) iz of

Variance,” Biometries, Vol. 2 (1046), pp. 7-11.

. Fisher, R. A., The Deszgn of Ezperiments, 2d ed. London: Oh\%l & Boyd,

Ltcl 1937 Section 24

\ btatwtwal Methods for Research Workers, 10th edy \ Lond(m Oliver
and Boyd, 1946, Section 39,

“The AT‘I&IYE:J.S of Covariance Method for the\f{elatlon Between a
Part and the W hole,” Biometrics, Vol. 3 (1947} 65-68.

. Juckson, Robert W. B., Application of the 41@&)3% of Varignee and Co-

varignee Method to Educational Problems, ert of Educational Research,
University of Toronte, Bulletin 11 (1940).‘ \

. Johnson, Palmer O., and N eyma,n J., *Le3ts of Certain Linear Hypotheses

and Their Apphcatlon to Bome Edumtmnal Problems,” University of
London, Depurtment of Statm’clt_s, Statistical Research Memovirs 1 {1536),
pp. B7- 93

Newman, Horatio 1., Freeman,\ Fl ank N., and Holzinger, Karl J., Twins:
A Study of Hsredat'y and, Enmmnmem Chieago: Tniver. gity of Chlcago
Press, 1937,

\
- Snedecor, George W 'én,d Cox, Gertrude M., Disproportionate Subclass

Numbers tn Tables af\Multiple Classification, I owa State College Frpertment
Station Research Bwllstin 180 (1935), pp. 236-272.

. Tsao, Fei, “Teqt bi"Statistical Hypotheses in the Case of Unequal or Dis-

ploportlona,tc umbers of (bservations in the Subclasses,” Psychometrika,
Val, 7 (19-1'2} pp. 195-212,

Genmal Solution of the Analysis of Variance and Covariance in the
Case 9 MInequal or Disproportionate Numbers of Observations in the
Subclasses,” Psychometrike, Vol. 11 (19486), pp. 107-128.




CHAPTER XII
THE PRINCIPLES OF EXPERIMENTATION

There 18 an increasingly gencral realization that a formal experiment
is an cxacting enterprise designed and carried through wirh wighicutous
care to answer a few definite questions.  The abilily Lo Jr;gmgulate pro-
ductive hypotheses and to design experiments to test 1:-},1{;.11?"15 the mark
of a first-rate research worker or scienlist. An underdanding of the
prineiples underlying modern designs is cssontial ab c¥ery stage of an
experiment if the primary data are to be colleci;é{l‘i'n such a way as to
provide the basis for valid infercnce and so 4s 46 enable the maximum
amount of information to be clicited from thepdiost efficiently.  Perhaps
a clearer grasp of the requirements u1}@@plying sound experimentation
can be gained by the scientific readerqbrough studying and examming
designs that lead to valid conclusion®” He should apply the techniques
to actual problems, however, sin}}g ‘difficulties usually tend to disappear
on such closer expericnce, 0N

The whole subject of cgn‘nﬂéx experiments is undergoing rapid devel-
opment as new possibilitigs 8f the methods and of their correet application
become belter undgrst:(:md. The principles of experimentation, which
originated in agripl}k;\re, are finding increasing application in many
fields of science.\The difficulties met with in application in cne field
are not identi®alwith those in other fields, but many are similar. T}lie
solutions Qf"@'bblcms arrived at in one field are often of material help 0
anothegx.} "here ficlds differ fundamentally, new techniques are neces-
sary. \Buch needs are discovered only in dircet contact with the obstacles
theibsclves. Beeause modifications and extensions of the prineiples of
‘dasign are capable of, and will undoubtedly have, cver wider application,
fie student of modern methods and statistical analysis needs to kno¥
how to apply these principles and how to read infelligently the reports of
rezearch workers who have used them.

Modern ideas of experimental design differ sharply from earlier_ or
traditional ones. It has long been an admonition in p’tli1L’>5013hl(55‘l
treatises of scientific experiment to hold constant all except one of the
factors in a complex 5o that its effect may be determined. The exper”
menter s advised to arrange an experiment so as to make it as sensitIve
as possible with respect to one question but as insensitive as possible with
respect to all others, Just as mathematical development has beet
biased toward physics, so has the direction of experimentation been

275
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largely determined by the pattern of experimentation set up in physies,
which emphasizes the importance of varying the essential conditions
only one at a time. The difficulty in applying such a principle, par-
ticularly in branches of science where the data of the research worker
arc subject to all sorts of fluctuations, had long been recognized by
critical workers, The liberation of the research worker from stereot yped
experimentation is relatively rceent.

The problem underlying the development of procedures appropriate
to deal with types of variable malerial is twofold; one aspeet dealing with
the design or logical structure of the experiment, the other with the
analysis and interpretation of the results. 'The developmentN\of the
logical structure underlying the whole technique of modern cxﬁeﬁ‘iﬁmnta]
design and of the appropriate statistical Lools for the analysis and interpre-
tation of the results of such experiments is largely duefo B. A. Ficher.
Beginning his work in 1919 with the founding of the statietical laboratory
at Rothamsted (Ilarpenden, England), Professor Figher has revolution-
ized 1he science of statistics and the prineipleg“of designing biological
experiments. His principles of cxperimentatioh and methods of statis-
tical analysis are finding increasing applicagivn in many ficlds of seience,
particularly wherever the basic materialsaré variabloe. The possibilitics
of applying these principles also tq.jc-lic improvement, of physical and
chemical experimentation have bafely been recognized. Tn biophysies
and biochemistry these principj;és ‘are likely to become increasingly
important.

The subject of the des‘igfr of cxperiments Is too large and too impor-
tant to scicntific workefg™€0r it to receive incidental treatment only. Tn
his text The Design of Experimenis Fisher presents the framework of
scientific inference @hd the principles of modern experimentation.  Our
discussion is limited to a bricf consideration of the major claracteristies
of modern e;p;erlmental designs, We are especially interested in the
role Whiclgététistical procedures play in serving the requirements of
sound e;-\*li’m'imcnt-al design and in furnishing the means for unambiguous
interpfatation.

SThe Self-contained Experiment. A principle of general utility in
statistical analysis is to rely upon the evidence from the data themselves
when allowances are to be made for cortain inequalities, as in certain
comnparigons under considerstion. Arbitrary corrections based on an
a priori basis without reference to the information provided by the data
themselves cannet lead to convineing conclusions.  Viclations of statis-
tical principles of this kind, though not so obvious a misuse of statistieal
analysis as is an arbitrary selection among obscrvational data previous
or subscequent to collection, are probably the scurce of the political prin-
ciple that “anything can be proved by statistics,” or of the crescendo
“lies, damned lies, statisties.”
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Fisher sets up the self-contained experiment as the model for the
rescarch worker and describes the properties which such o model must
possess. Although progress in scienco may result from the better order-
ing of the expericnces we have had, it is chiefly in the collection of new
experiences that advancement fakes place.  However, if these expeoriences
are to afford a secure basis for bringing new knowledge into being, they
must be planned in advance in accordance with principles that make
such outcomes possible. Thus, experimental obwervations are cssentially
expericnces formulated at the time of arranging for their collection.
Iixperimental observations are related to existing bodies of &dientifie
knowledge as new obscrvations are carricd out to test theosies growing
out of the previous collection of data. Theories In turn hedetne modified
and reformulated as an ocutcome of the new observatigms. 1ul once
an experiment has been designed and executed, its intérprctation must be
based on its own evidence. The purpose, thereforé, wf making an experi-
ment self-contained is to make possible the validwind uncquivoeal inter-
pretation of its results without referring for decision or scttlement or
consideration to other experiments or tO‘QIC aggregate of expericnees of
prior collection. The principle that ab.eéxperiment should be self-con-
tained determines the essential 'djf‘fci"enc-e between mere statistical
observations and those which arg:‘cé[lcr:t-ed in accordance with a clearly
conceived plan. RN Y

The Function of Contrals. A primary requisite of the principle that
an experiment should be(Self-contained is the necessity of supplying 2
control or controls, thet s, the need to base all conclusions conterning
the differential effe&\ bf two or more contrasting treatments on the
differences in the,re8ponse or reaction of two or more similar bodies of
experimental mhaterial. By the use of controls, experiments beecome
comparatiyg and not merely absolutc. Absolute information is usually
of little inbercst or importance. The reasoned explanation of the fune-
tion of\tontrols is clearly illustrated by the following example (Ref. 2).
’\;A‘Ssume that an experimenter working with animals injected some
403 into 3 rabbits and found that all 3 got violent and prolonged con-
viilsions followed by death within an interval of 24 hours. In support
of hig conelusion that the injected substance was the cause of the death of
the animals, the cxperimenter might draw from his own previous expert
ences or from those of rabbit breeders in general. Admittedly, only
rarely would three designated animals die in the way deseribed within
such a short period of time. How would the conclusion have heen
made stronger if the experimenter had taken the precaution to inject
a number of control rabbits with a ncutral substanee at the same time
at which he injected his experimental animals? The answer to this
question provides the rationale underlying the usc of controls. Jt 18
that the controls are used to exclude, at a designated level of probability,
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a number of alternative interpretations of the experimental results—
possibilities  which have individually and collectively an unknown
probability of having oceurred. For example, the rabbits might have
been ill from tetanus, hydrophobia, cholera, or some other unsuspected
epidemic discase; perhaps the needle was infected with a poisonous
substance; or it might be that the expenmentei s stock wasg genetically
of a kind “hlch reacted in this way in general to injections. Suppose,
however, that the experimental rabbits had been randomly chosen from
the whole herd, the controls included. Then, if their reactions MRS
clearly different from that of the controls, there was available a_précise
measure of probability for causes other than the expemmcnml Naector
for having brought about the observed result. The probabll\lt‘} 15 based
exclusively on the number of rabbits used, completely 1ndeandent of all
prior experience of these animals, Assume, for instanép,Mtlat 5 control
rabbits have been selected at random from the totstl»‘numb(r and, after
having been injected with distilled water, had nbi\tied of conv ulslon%
The measure of prebability is obtainable fron\\a simple application of
permutations and combinations. "\

There are 56 ways of choosing a group.ef 3 objects out of 8. If the
3 objects were to be selected wnsecutn’ely, there would be successively
8, 7, and 8 objects to choose fropi™ and, therefore, the succession of
choices could be made 8 X 7 X 6; or 356 ways. This number repre-
sents not only every possible set’ of 3 but also every possible set in every
possible order.  Threc objestizcan be arranged in order in 3 X 2 X 1, or
6, ways. The number of\po‘s&ble choeices is found by dividing 336 by 6,
which is 56, The resu 56, is essential for the interpretation of the
experimental resultg., Mhe 56 sets of 3 which might be chosen would be
distributed among™hé possible events as follows:

¢ \ Number
Q& Dying  f
™3 0 10
O 1 30
Vo 2 15
3 1
Total. .. ... 56

The probability of the observed difference, if it were not attributable
to the material injected, is, therefore, 1 in 56, or a probability level of
018, which by the usual standards may be regarded as significant. Tt is
also worth noting that the use of the controls serves to transform the
quality of the experimental evidence by making it strictly objective for
others who have not undergone the cxperiences of the experimenter,
The weight of previous or cutside evidence is even much less when the
object of the experiment is quantitative, becatse such evidence is usually
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very indefinite or highly variable. Thus, the essential condition for
controlling the interpretation of experimental results is the provision of
comparisons between twe or more unlike variants.

The Valid Estimate of Experimenial Errors.  The second requirement
of a sclf-contained oxperiment is that it must hold within itself the
possibility of sceuring a valid estimate of the axperimental crrors which
really influcnce the comparisons made. That is, it is necessary to esti-
mate the error from the data of the experiment fisell, because it is only
under such conditions that proper confidence ¢an be put in thexesult of
the experiment. In any experiment there arve factors which iy suscep-
tible 1o some degree of control by the experimenter. T Hicir effect
cannot be entirely eliminated, owing to chance fluctuations, Many of
the factors giving rise to these fluctuations which :aff}:m:t performance
are small in size and random in incidence, so thdbyH Jis impossible to
present an exhaustive list of all the sources ofwariation in the cxperi-
mental material. Tt is customary to designadaithe component of varia-
tion associated with the random vm‘iatiop'ﬁf*%hc experimental material
as experimental error.  The errors do JgoTxJ\follmv any known exact laws,
and 2o the laws of ehance are usually gesignated as descriptive of their
distribution. R\

As wag pointed out in theﬁié;f:ussion of analysis of variance, it is
sssumed that the experimentglerrors to which the experimental observa-
tions are subject shall be Andependently and normally digtributed with
the same variance, TheNmportance of the experiment malking possible
a valid estimate of $He txperimental ervors is indicated by the fact that
only under such genditions is it possible to apply to the experimeutal
resulis tests of @heir significance which are disconnected from all past
experience gaflAire hence capable of adding new knowledge. Therefore,
the desigr™df a self-contained experiment involves the consideration of
means \gﬁiﬂording a valid cstimate of evror as well as ways of making
p(_)s.silﬂe an unbiased comparizon belween contrasted treatments. The

) wﬂiﬁity of other estimates of crror would depend on other mathematical
agsumptions which the particular method of estimation would introduce.
There would be no vhjective reason for accepting such assumptions as
true, if the experimenter hag not taken the precautions needed to make
them frue.

Replication. The first requivement of an cxperiment designed =0
that a valid test of significance may be applied in ils interpretation 13
replication, the process of repeating the same treatment on more than one
object of the experimental test. The word “plot” is used In agric-lll'tura']
experimentation to indicate an individual plot or arca of land. The
“plot” could be an experimental animal or an individual, for instance.
Replication is essential in the first place since it is a means of diminishing
the experimental error. Just how this is done may become clerr by
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considering, first, certain factors contributing to the aetual errors of the
cxperiment.  The amount of information which a particular experiment
affords is known as its precision. Fisher succeeded in quantifying the
concept of information so that now the precision is wholly a quantitative
factor In the value of an oxperiment.

There are a number of factors, both quaniitative and qualitative,
which may contribute to make the actual errors small.  Some of these are
the measuremont of the criterion; the improvement in the techniques of
controlling nonexperimental factors; care in ensuring that in the experi-
mental material the general conditions are those occurring in population
practice; the measurement of controls under as neatly as possibleMhe
same conditicns as those for the unknowns, including time: and tifc‘great—
est possible avoidance of hidden systematic errors as well a stbjective
errors.  Only when sufficient care has been given to ensurethat working
errorg have been reduced to unimportant guantities £an improvement
of the replication and the organization of the strugtise”or arrangement
of the experiment be expected to achieve greatlininereased precision or
sengitiveness. The process of reducing wqr@fg errors hegins with
reducing the largest sources of error, and if éontinues until sources of
error that hitherto seemed inconsequentighbecome significant by limiting
the value of 1he whole enterprise. o\ I

The second function of replicationin an experiment is to provide
the data from which the appropri@te estimate of experimental error can
be caleulated.  Thus replication performs the double service of reducing
experimental error and of furflighing an estimate of the error that remains.
Replication is the solo soutce of the estimate of crror.  To make certain
thut the estimate of ertoris unbiased requires as much attention in the
design of an experimént as does the guarantee that any of the direet
estimates are witheut bias. Furthermore, the unbissed estimate of
experimental effel is fundamental for the application of valid tests of
signiﬂcance\éf“whmh the value and significance of the cxperiment are
determined.™ Likewise, an unbiased estimate of error is a necessury
condjigiqil.'lf one is to assess the weight that may be given to the cvidence
of gh\experiment should its results differ from those of other experiments
of thé same sort.

Bince the accuracy of an experiment as represented by the standard
arror of a moan of any one treatment inereases in proportion to the square
root of the number of replications, it is clearly indicated that a larger
differcnes in treatments would be necessary to demonstrate the sig-
nificant effoet based on a smaller than on a larger number of replications.

The argument is sometimes advanced that the results are good enough
if there is reason to believe that the estimate of error is at least not an
underestimate. Fisher points out that the danger of the fallacy of
assuming to be “on the safe side” is that there is no sceurity in admitting
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a bias in either direction. The effect of overcstimating the error may be
to prevent the experimenter from drawing a conclusion which the experi-
ment justly substantiates. Such a practice could lead to the helief that
an effect is consequential when it is not, and so to ignore the real cause
of disturbance in the design of subsequent experiments.  Beeause of the
exploratory and tentative character of much research, a promising line
of inquiry might be given up through a failure to discern the clue which
the experiment might otherwise have provided.

Randomization. Tt is essential in an experiment lo recognize thab
cqualization is approximate to a greater or lesser degree, no makler how
much carc and experimental skill are exerted in attempting tdjequalize
the nonexperimental conditions which are likely to influenéeithe result.
In many significant practical situations the attempts at coptalization are
definitely inadequate. It becomes of fundamental ilgr}ﬁ:I'f.erlce that this
inequality shall not lead to biased estimates andZhvalid fests of sig-
nificance. The essential safeguard is includehMn the experimental
procedure by a process which is known as randemization. Just how this
operation works can be explained by consi;iex\lﬂg again the origin of error.
The rcal errors of the experimental geshits originate from diffcrences
in the nonequalization of the nonegpefimental conditions among the
obijects or groups of objcets tha't-’@ré, treated diflerently. The estimates
of exror are secured from the discrepancies among the objects treated
alike. Conscquently, it is ngeessary only to make certain that any two
objects that may be treated, alike have the same probability of being so
treated. Likewise, if tpeated differently, the objects must have the same
probability of being’@xt’rcatcd, in ecach of the ways in which this is pos-
sible. This precatiion is necessary to assure that each component of
error which mdy; influence the experimental results may with equal
frequency furnish the data used in the estimatc of error. The ealeulus of
probability“and the mechanism of the statistical theory of sampling dis-
tributighs‘can then be applied with confidence.

Randomization, then, is the procedure of making certain that the
'pr\é;b\abilities of being subjected to like treatmecnt are equal for cvery
relevant pair of objects in the experiment. 1t is worthy of note that the
object of randomization is not to increasc the precision of the exporiment
but only to guarantee that whatever precision the cxperimental arrangé
ment is capable of providing is neither over- nor underestimated. Sys-
tematic arrangements of plots or objects in contrast to randoin
arrangement have been shown to give consistently either an over- or al
underestimate of error.

Controls, replication, and randomization have bheen discussed 35
the essential aspects of the principle that an experiment should be
gelf-contained, .

Relationship between Experimental Design and Statistical Analysis-
The relation between experimental procedure and statistical analysls
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will now be considered more fully. It is apparent from the discussions
of experimental design that a substantial number of the ideas or concepts
arc of a statistical nature. In fact, a clear understanding of the sta-
tistical proeedures used is an essential part of the understanding of the
principles of experimentation. These procedures serve to fulfill the
requirements of intelligible and aceurate experimental design and to
provide the machinery of unequivocal interpretation. We note, then,
that the question of experimental procedure and that of statistical analy-
sis are two aspects of the single problem—the problem of fulfilling the
requisites of the operations involved in making additions to scientific
knowledge by experimentation. N

An analysis of the relationship between the two aspects reveqls, that
once the practical experimental procedure is established, only onevméthod
of statistical analysis can be valid. Furthermore, a fact of greatpractical
gignificance ig that the validity of the statistical analysig ‘depends upon
the introduction of a random element in the arrzmgcmé;tt'of the objects
of the experiment. A definite and complete staténtent of this specific
process of randomization followed determines injddvance the correct
statistical method to be applied to the experimenfal results. The logical
organization of each of the possible typesydf randomization is set forth
by the analysis of variance. The neatness.of the arrangement of calcu-
lations and of the facility of their intefPrctation in the analysis-of-vari-
anee table is greatly appreciated byghe modern research worker. The
compactness and simplicity of thig*form of summarizing the results as
well as the logical structure ofdhe cxperiment have added greatly to the
intelligibility and accuracy‘bf‘its interpretation. The logical strueture
of the experiment is shown by the division of the total number of degrees
of freedom, the indepéndent comparisons, corresponding to each of the
sum of squares calbulated.

The developmient of principles improving the art of experimentation
has been concémitant with that resulting in tools suitable to analysis of
expeﬁment&]\rééults. The standardized methods of statistical analysis
were degighed largely on the hasis of a mathematical theory in which the
probleths’ underlying experimental designs of more recent origin had no¢
been\éxplicitly considered. It has been previously pointed out how
“Student’s” discovery of the i-distribution and Fisher’s extension to the
2-distribution made exact tests of significance possible, both for small and
for large samples. The modern advunces in experimental design have
brought about an increased awareness in practical work of the numerous
different sources of variation affecting experimental and observational
material. ¥xact tests of significance and the technique of the analysis
of variance are indispensable in the assessment of these various compo-
nents of variation.

We should not overlock the mathematical framework upon which the
modern tools of scientific value have been built. This framework gives
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precigion to tests of hypotheses concerning factors giving rise to variation
and to experiments planned to yield maximum information.

The statistical treatment of the results of replicated experiments is
usually established on the assumption of the normal law of crror, and the
general formulation of the analysis is drawn from the method of least
squares. It is essential for the correct application of the method of least
squares that any components of variation not removed by the experi-
mental design be normally and independenily distributed,  If these
conditiong are not fulfilled, the theovetical basis underlying lests of sig-
nificance breaks down and henee cstimates and tests of signiﬁmwe are
invalidated. Thus, in the test of significanee assoviated with thédnulysis
of variance, it was assumed that the measured cfleets of GGhé [nctors
under experiment were statistically independent and normglly distributed
variates, all with the same variance buf with possibly.}liﬁ'm‘cnb neans.
Unless, therefore, the arrangement of cxperiments 43 Jbalanced to fulfil
the assumptions, the statistical reduction of theydite would be very
difficult, and convineing results would be imposaible. Such a balanced
arrangement is ilustrated in Equation (J0.04 age 214, where the entire
ealeulation is much simplified by the fadt “thut when the enuation ig
squared and the terms are summed, € cross-products become zero.
Another significant property is t-hp,t.{tﬁe differcnce between the means
for any one factor is independentadf the other factors.

The validity of the method of Teast squares us the basis for the testing
of hypotheses by experime;}tal’fcsults was secured by Fisher through the
introduction of randomigafion into the design. Tt has been pointed
out that systematic ax é@gi‘,ments are apt to lead to biased results, because
the necessary elemgnﬁ of randomization is lacking and hence the tost of
hypotheses through'fesults based on the method of least squares does not
produce the sAme objective validity as does a test on cxperimental
observations\ébtained from random arrangements.

In S3p%e“of the fact that the relation between the material conduet
of an_experiment and its statistical interprotation must be used in plan-
ang:}S’dnclusive experiments, some experimenters continue to work with
Faglable material without such design and to obtain discordant resulte
- incapable of being fitted into a scientific system. Controversies some-
times arise because different experimenters get diverse results for the
same problem. In other cases, methods of statistical analysis are
employed which result in definitely misleading estimates of error. Also,
methods of experimentation are used which cannot give a valid test of
experimental results. The common proceduve of consuliing a statistician
or statistical principles after an experiment or investigation bas been
completed is equivalent to holding s post-mortem analysis. Perhaps
the only interpretation of the data that can be made is to state from what
the experiment died. But when research workers turn to sound methods
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of statistical analysis which involve carefully planned experimental
designs, difliculties of the type enumerated above tend to disappear.
Therefore, we can state that the most tmportant work of the statis-
tician is Lo prepare the plan of the experiment or investigation in such a
wuy as to get the best answers to the questions raised. Tt has been
demonstrated that a complete overhauling of the process of collecting, or
of the experimental design, can often inereasc the precision {enfold or
twelvefold for the same expenditure in time and labor. The modern
research worker, therefore, needs statistical knowledge not only for work-
ing out the rezults but also for designing: unless he has a working knowl-
cdge of the technigue he employs, he cannot conduct his expesiment
properly. Tn planning an experiment, it is espocially importagtyto give
due attention to possible results and their interpretation. /The“experi-
menter must be Induced to use his imagination, and t-'o,p,ﬁiiicipate the
confusion and difliculties that will agsail his invesligatian if*they are not

forcseen. _ ~\ v
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CHAPTER XIII
APPLICATIONS OF THE PRINCIPLES OF EXPERIMENTATION

We now proceced to show the application of the principles of experi-
mentation to certain cases of technical importance, Our emphasis is
upon the interpretation of the experimental results and the fnpdamental
part which statistical methods, particularly those of analysis of Wariance
and covariance, play in this process. RAY,

Let us take one of the simplest designs planned to comfare the actions
of two like individuals under contrasting conditions. £ biologist might
wish to determine the effect of the removal of a deég¥scated organ of an
animal. As a control he would perform a simila¥@peration upon another
animal of the same kind but in which the orgamiiider investigation would
not be disturbed. In this way the experigfianter attempts fto make the
situations alike in all respects excephthe factor to be tested. Such
perfect experimental control is an iJ8al desideratum which is never
capable of complete fulfillment. 'l'tf’is, however, o basic principle upon
which cxperimentation depends, 23 )

The Single-Factor Experihent. The method of pairing takes into
account two desiderata ingxperimental design: (1) The requivement of
homogeneous experimentdl” matcrial so that the sensitivity of each
individual observzs,tiotkiﬁay be enhanced, and (2) the need for multiplying
the number of obgervations in order to reveal the reliability und the
consistency of ¢Hg'resuits. The two coupled individuals would, presum-
ably, react alikc’under the same treatment, and the difference ohserved
under cu{;méting treatment measurcs the differential treatment effect.
A minimam of two pairs, or replications, is required, sinee with a single
pair ifwould be impossible to ascribe any difference in behavior detected
to\t.lie difference in trestmoents or to the particular variability of the
ngdividuals, or to both jointly. The differences botiween the measure-
ments of the respective pair members constitute the cxperimental data
upon which inferences are to be drawn.  Which individual of a particular
pair shall receive the one or the other of the two treatments is deter-
mined by a random process. If treatments are randomly assigned,
replication serves to equalize the effect of uncontrolled sources of varia~’
tion. It is the variation among the several differences that is used in
estimating experimental crror. By comparing the mean difference
attributable to the differential ¢ffect of the treatments with the standard
crror of the meun difference, the significance of the results of the experl”
ment is to be determined.

286
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We have previously examined the statistical method for redueing the
data obtained from an experiment purporting to be of a single-factor
type (page 75). The differcnce between the achievement scores of two
individuals paired on the basis of their potential learning capacities was
computed for each of the 25 pairs. The null hypothesis was tested that
these differences constituted a random sampling from a population of
such differences distributed about a mean of zero in a normal manner.
The criterion, ?, was set up for testing the first aspect of this hypothesis.

The method of replicated comparison of individuals, by pitting each
individual against another individual of like kind in conditions madé®as
cqual as possible, is a simple and effective experimental design for te*iting
the differential cifect between two treatments. It is, however, lrmltnd to
situations where the presumed effect of a single factor can bé, Theasured
under the controlled conditions preseribed for the validity ofthe method.
In practice, these conditions are not often present. Fuuhermorc it, is
usually desirable to test the effects of more than tw6" freatments. The
need for broadening the scope and comprehensivgness of experimental
mquiries hag led, therefore, to the extension of replicated compsrisons of
individuals or groups of individuals to more gm‘d Inore complex situations.
In this extension, the subdivision of the eXpdrimental material into rela-
tively homogeneocus series is a fundamantal part of the process, as was
obgerved in the paired experiment. o Just as the advance in systematie
sampling has been made posmble by utilizing prior knowledge of the
population sampled, so the utilization of knowledge of how to subdivide
the experimental material pmhtably hag played an important part in
the evolution of experimg n\tal design. The principle that the process of
subdivision can be adwantageously duplicated is also opcrative. The
smallness of numberybr quantity of sufficiently hemogenecus material
circumseribes the fumber of different treatments rather than the number
of replications, t}m\b can be incorporated into an experiment.

The omized-Block Arrangement. The experimental design
known as, tﬁe randomized block is a stmple applieation of an experimental
arrangement illustrating the principle of the subdivision of the experi-
meftal aterial into relatively homogeneous series. In this arrangement
each freatment occurs equally frequently, more eommonly once in each
block, and the treatments are randomly allotted to the experimental
units within the bloeck. The term “block” may denote any group
containing the required number of experimental units. In arranging the
grouping so that similar experimental units are contained in the same
block, the aceuracy of the treatment comparisons is increased by eliminat-
ing from them the differences due to dissimilarities among the different
blocks. The process of randomization guarantees that no treatment
bias is introduced and permits an unbiased estimate of experimental
error basic for the validity of the test of significance.
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Consider an experiment in nutrition on the relative effect of 4 differ-
ent freatments A, B, C, and O (no treatment), which are randomly
applied to 4 blocks of 4 children cach chosen as ncarly olike as possible
with respect to age, height, and weight at the beginning of the experi-
ment. The arrangement is represented in the following diagram:

| |
i Block I Tloek 1T RBloek 111 Bloek IV
Children 1 2 413 6 7 slo 10111213 141518
Treatment OB C A|A C OB ‘ B A O O|QLND A
L,

AN
We give the analysis for the general case where & dcnqtgs\fhe number
of blocks and p the number of treaiments. Then theledfation for the

sums of squares is A
b3 _ L _ B _.“'}\\.
Y- X =p ) (- X ) (K-
1 - 1 ,‘:\\“
(1) (2) RSt
P )
AF @ - & - X+ D 130
NN
(4)

where X; is the mean of @jblbbk, X, is the mean of a trealment, and X
is the grand mean. The edrresponding cquation for the degrees of free-
dom is N\
ph=D=( -+ p-—D+@-E—-1 (13.02)
G- @ (3 (4)

The follgﬁ\ﬁﬁ:g formulas are used to caleulate the sums of squares:

\*" vk Pk
(1) Tafal: CSEE SR e OB
AN ’ T n r
{X (where T = grand total for all plots)
2) Block T, Xz o1y T
@ Bodks: ) G- X =) N
(where T, = total for one block)
4 7
g gl S T
. 3 Y o
(3) Treatments: 1“21, X, - X 2 &~

{where T = total for one treatment)
Pl
(4) Error: E(X XX+ Xe=0—-2 -3
1

(subtract blocks and treatments from total)
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These components are then set up in the conventional analysis-of-

variance table.

The standard error of the experiment s

ks
Z(X—X‘b—X]+X’)2
1

8 =

k= -1
The standard crror for the mean of one treatment is

3

SX; —_——
vE
TABLE 86

(13.03)

(13.64)

~~ ’
oA\

TrE ScorEs oF 25 Pamms oF SrupENT: Sterec1Ed To Two DIFFERENT 'II\EAT\ml\ TS
in A Ra¥nouMIZED-BLOCK ARRANGEMENT

L 3
R

11

3
Treatments Differenceg (> Sum
Pairs 3
X X2 X\}\\_; 3.4 X + X
e v { ;.
{1} (2; 3) O M C) (5}
1 73 ~38 15 131
2 52 a7 15 %9
3 100 53 47 153
4 80 Q 77 —17 157
5 75,0 51 24 126
6 67\\"' 62 5 120
7 BL 55 6 116
8 S50 30 29 89
9 PN 29 — 6 72
10 N 19 16 3 35
11 N 32 15 17 47
12 NW 27 37 ~10 64
13 N 68 44 24 112
14,59 hd 27 27 81
) 26 43 —17 69
&\ 30 27 3 57
N\ 17 69 53 16 122
8 43 20 14 79
19 923 13 10 36
20 11 17 -6 28
21 26 20 [ 46
22 30 9 21 39
23 28 35 -7 63
24 53 21 32 74
25 23 42 ~19 65
Sum 1142 910 232 2052
Bum of
squares 64,226 40,474 8962 200,438
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We may further illustrate the principles of the randomized-block
design by applying them to the experiment presented on page 75, Here
there are only two treatments, which are assu med to have been randomly
assigned to the members of the respective 25 pairs. Each pair corre-
sponds to a block, and each individual in a pair or block is an experimental
unit.  The logical structure of this type of cxperimental design, specified
by the process of randomization carried out, is sorted out by the analysis
of variance. In this case each item is classified by two eriteria; for
example, an individual achievement score is classified by treatment and
membership in a particular pair. The analysis is carried out as follows:

Step 1. 'The measures of treatment effeels for the respectivehembers
of the 25 pairs are given in columns (2) and (3} of Table 86, {"The differ-
ence and the sum of the treatment effects are given in coluing (4) and ().
The sum and sums of squares are calewlated and recorgled in the last two
rows, respectively. AN '

Step 2. Calculate the sum of squarces for differences:

E (X, — Xo)% — [2X; = Xl 8962 — (232)7 __ 300.04

n RS 25
This sum of squares is then divided :bif’xQ, the number of achievement
scores involved in each difference. «\[his is done to obtain the per-indi-
vidual measure of the variatiogvdf ‘these differcnces, since the variance
of the difference is an estim@.’s’e‘ ‘of 22 (sce page 37). The quotient of
B8800.04/2 = 3404.52 is engered in Table 87 as interaction or experimental
error. If the differences among the individuals of the respective pairs
had been tho same,\{ﬁére would have been no interaction. Thus, the
source of measuretent of the experimental error is the uncontrollable
variation of these differences.

Vo \u TABLE 87
ANALYSIS 0F VARIANCE OF THE ACHIEVEMENT Trst SCORES IN ALGEBRA OF THE 25
e\ Pamrs oF STUDRENTS
.\Soﬁrc(: of variation | LF Sum of Mean square ;. F ‘ Hypothesis
< \& Y1 squares quare \ ‘
Interaction or
cxperimental error 24 3,404 .52 141 .855
Between pairs 24 16,004.92 666.870  4.70 Rejected
Botwoon hestments | 1 1076 48 1076.480  7.58 Remains in doubt
Total 49 20,485 .92
__.——__—_-'-

Step 3. Compute the sum of squares from the sums:

2 (X: 4 X — %;%—I-_Xi]“ = 200,438 — (i{);_z}f = 32,009.84
J
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Here, as in the case of the difference, since the sum is made up of two
achicvement scores, the comparable sum of squares for pair variation is
$(32,000.83) = 16,004.92. This value is entered in Table 87 as the
“between’’ pairs source of variation.

Btep 4. 'The sum of squares fo measure the variation assigned to
trestment effects is obfained as follows. The mean of the two treatment
totals is

+2{X1 + Xq) = $(2052) = 1026
The two deviations are 1142 — 1028 = 116; and 910 — 1026 = 7\116.

The sum of their squares is 26,912, 'This sum is required on a per-pair
basis and is therefore divided by 25. The quotient is enterg;d, as the

measure of variation due to treatment in Table 87. ®
Step 5. The total sum of squares calculated independently provides
a check on the caleulations. Tt is given by 2\
¢

[y e Joror] - £ i - 2
0= 20,485.92

This value is recorded in the total row i Table 87.

Step 6. The total number of degrecs of frecdom is 1 less than the
number of individual achievement®scores, or 50 — 1 = 49. The 25
differences and the 25 sums each corftribute 24 dogrees of freedom; the
two treatments, 1. Thus, the additive property applics to the degrees of
freedom as well as to thesum of squares.

Step 7. Tests '{{igﬁiﬁcance can now be applicd to the results
recorded in the apalysis-of-variance table. The differential effect due
to variation in tQéé.tmcnt is found to be F = 1076.48/141.855 = 7.58, a
value signific ﬁ'at the 5 per cent level. The table values for F corre-
sponding_to\Wdf. 1 and 24 are: Flos = 2.26; Fo = 7.82. A similar
finding wa given by the i-test (page 78), where! = 275and Loy = 2.797
for d.f.:’:= 24 This is a demonstration of the fact pointed out on page
55, fhat if there is only 1 degree of freedom as in this experiment of tivo
‘E;reéﬂnents, F =1 TThus & = 86.1184/11.3484 = 7.58.

The test of significance for the differcnces between the means .o.f the
pairs is given by F = 666.87/141.855 = 4.7. This va,lue.ls significant
ut the 1 per cent level; the value of F for di’sof 24 and 24 is F_fu = 2.66.
of variation among the pairs illustrates
the contribution of the experimental design to the precision of the experi-
ment. Tf this source of variation had not been isolated, the variations
among the pairs would have been included in the experimental error,
thus substantially reducing the precision (see Table 88). Thus by using
the randomized-block design in this case and putting equated md‘lwduals
in each block, the variation among pairs has been controlled and isolated.

The separation of the souree
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TABLE 88
ANALYSIS OF VARIANCE OF THR AoHIEVEMENT-TRST SCORES OF TIU 25 Pamms or
SrUpENTS WITHOUT IHE 1s0LATION-OF-TREATMENT IIFFECT

A Bum of Mean ‘ ) | . L
Source of variation D.F. squarcs | square ‘ F TTypothesis
1l
Between pairs 24 16,004 .92 666 87 3.38 Rejectad
Within pairs 25 4,481.00 179.24
Total 49 20,485.92

An objective basis for determining the increase in precigion’ in using
randomized blocks as compared with the uze of two gralps #f random
samples of students for the experimental comparizon his been given by
Yates (Ref. 21). The calculations arc as follows: /A

The ervor variance, 141.855, is substituted ,Ee}\\the mean square of
error (24 D.F.) and the mean squave for Peeafment {1 D.F.). The
corresponding sum of squares is found by muliplying the evror variance
by the combined degrees of freedom. rL‘hus (141.8553(25} = 3546.375.
This product is added to the sum of¢dqtares for “hetween,” 16,004.92.
Thus, 16,004.92 4 3546.375 = 19,851.295. Thiz sum is then divided
by the total degrees of freedgmay19. Thus, 19,551.205,/19 = 309.005.
The efficiency of randomizediblocks as compared 10 random gampling
oquals 399.005/141.855 =781 or 281 per cent.

Symmetrical T ncomﬂh@s ‘Bandomized-Block Design. A nseful modifiea-
tion of the randonfized” block type of arrangement is the one known
as the symmelrical\gncomplete randomized-block design. In this arrange”
ment each blqcl{'cdn't-ains £wo units only, and all possible com binations of
the L‘reatmeg»(s,'tak(:n in pairs, are included in the different blocks (Ref.
21). Thif¥¥pe of design hus proved fo be especially valuable in situs-
tions yhere the experimental material is naturally divisible into groups
w@l\i embers loss than the number of treatments all of which might
bdaf experimental intcrest. The study of several treatment effects oD

dch homogeneous groups as twins or triplets s an example.

The Latin-Square Design. The experimental principle that the
process of subdivisions of the cxperimental material may be advan-
tageously duplicated is best illustrated by the arrangement known a3 the
Latin square. 'This type of design is similar in principle to a randomized-
block arrangement, but in a Tatin square two Cross-Eroupings of the
experimental units are carried out, corresponding to the rows ah
columns of a square. Tho treatments are subject to the double restrics
tion that each treatment occurs once and once only in each row and 1M
sach column. Thus, the differences between rows and columns cat be
climinated from the experimental comparisons.
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The appropriate process of randomization, necessary to ensure the
validity of the test of significance applied to the experiment, consists in
taking any square arrangement which fulfills the conditions of a Latin
squarc and rearranging cither the rows or the columns, or both, al
random, and then assigning the treatments at random. The special
methods which have to be used to assure complete randomization can
be carried cut by using the typical “transformation sets” tabulated by
Fisher and Yates (Ref. 8).

The structure of a Latin-square design is illustrated in Figs. 6 and 7

and the appropriate statistical analysis follows. ~
Suit Presented ¢ \:\
» + v & e\
» 2 1 6 4 |13 A B KD | ¢
,G AR
2 5| 3 6 3 |17 DNN\4 | ¢ | B
E AN
G 7Y
2 4| 0 s | ol 8 ~fNC | D| B | A
z N\
o | ¢ 1] o« 3 [ B | c|a}lD

Total 15 5 20 100 0

Figure 8. Reeord for a gingledindividaal. Figure 7.
s 3

\er:1t designed to test the telepathic powers of a
large sample of individuals. Supposc that the experiment consists in
presenting 50 playing cards in sequence, cach card being dm.wn at random
from the pa,c,ggnd then returned. Each subject reports his guess o.f the
suit of thaveard drawn each time. Figure 6 is the record of a single
individual.” His score of correct assignments is the total of the frequen-
cles :ili'tiie diagonal cells, for example 12. No2cellsof a fset in the con-
indeficy table are in the same row or eolumn and no celll is common in
2 Yots. The sets may be defined by the letters of a Latin square as in
Fig. 7.
gMorc generally, let the letters A BCD rep’resent treatments in the
4 X 4 Latin squarc. The ‘‘plots’ arc arranged in 4 rows and 4 ¢olumns
and thore must be as many treatments as there are rows and columns.
The treatments are randomly assigned to the plots subject to the double
rostrietion that the treatment can octur only once in any row or colummn.
We give the analysis for the general case where n represents the num-
ber of rows, columns, and treatments. The equations for the sums of

squares and degrees of freedom are as follows:

A 4 % 4 Latin square.

Consider an experi



294 APPLICATIONS OF THE PRINCIPLES  [Crae. XIII

ii a‘f'—X)z-?%Z(X"X)Q—I—nz(X—X)?
T o @) (13.08)
+n E E - Dt Y Y Ke— K- Xo— Xt 200

=1 (4) i=1i=1 (5) |

where X, and X, represent the means of rows and eolumns, respectiv ely;
X, is the mean of a treatment; and Xy is the value of the item in the ith
row and the jth column. Q.

The corrcsponding equation for the degrecs of freedom is.~\~

“DN=@-D+r-—D+ -1+ - 2) (b 1) (13.06)
(1) 2) (3) (4) ’(‘5)&

The ealeulations for the sums of squares arg, as,\ﬁo lows.

oo

(1) Totals: E E (X, — X2 = 2\&}'@) 1

i=1j=1 23 AR

N Y

W T= grand total of all plots)

(2) Rows: n E (%, — )&)2"’2 (T2 32

"I )

(T, = Lotal for one row)
(3) Columns: l\'ﬁ}é X = Z(Tz) E

(T. = total for one column)

\ J "
(4} Truatmeﬁts n V (X, -~ X2 = z(i’ A Tj
s.l f-_—l ne
(T, = total for one treatment)
\@"Eiror: E Z Xs— % —X - X+28r=01-@ -6 ~&
i=17=1

The standard error in a Latin square is

= .fizti=1 ‘ 13.07
s n — 2(n — 1) (

The standard error for the mean of one treatment is

87, = — (13.08)

v
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ANaLysars oF VARIANCE OF THE LATIN SQUARE

3 i - 3 ;
v;:;:t?lotil D.F. sgumai':‘)sf Mean square | Varieneo ratio
2
Rows........ {n — 1} @) n(—) 1 #
Columns. . ... (n—1) &) n (i) 1 Fs
I'r =
eatments . . (n—1) @) n— 1) F
() \
Trror........ n—21n—1) ©) n=2m— 1)
1 AW,
Total n — 1) (0 (ne(,_) 5 7\ “

A Greco-Latin Square. A Greco-Latin square is "f((rt{ded by a pair of
Latin squares—one written with Latin, the othef ith Greek, letters—
which, when superimposed, possess the propert¥ that cach Latin letter
occurs once in each row and in each eol sy and each Greek letter
appears once in each row and in each colusmn, and with each Latin letter

(Ref. 7). Thus: "
Aa BaS " Cy

By Cu A8
C8~3%Ay  Ba

The two squares are orthégonal to cach other. Orthogonality is that
property of an experi {ontal design which makes possible the direct
and scparate estimabes of each of the several effects. From analytical
geometry it is reqaéléd', for instance, that two planes,

ar - by +d =0 and oz byteztd =
N\

are orthogQia’I' {perpendiculax) if ao’ + B Fec’ = 0. _The principle of
orthogonllity is s basic one in modern experimental designs.
”é:’ijdﬂ'in-Sguare Design in Psychology. Although the La!sin square
Was originally designed in agricultural experimentation f;o elirpl'nate from
the experimental comparisons possible differences in scil fertility among
plots in rows and in columns, it has found useful application in other fields.
It is especially advantageous when the disturbing effects of two fa.ct-or:s
need to be eliminated from the experimental COMPpArisons. In experi-
ments in psychology, for example, the cifect of the :squence or order
of the experimental factors or gituations in space or in time may need
elimination.
Thus, in an experiment (Ref. 9)
upon recognition of colors when they were Presentoc b
eye of the subject under different degrees of illumination.

the object was to find out the effect
ted to the dark-adapted
The following
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analysis-of-variance table reveals the skeleton of the experimental design
and the corresponding divisions of sums of squares and mean squares
into the several sources of variation:

Source of vartation DI | Bum ol squares | Mean sguare
1
. ) . SSn
Amonyg orders of presentation (rows). . ... .. 3 Ssa ry
e , “Ser
Among iflumination levels (eolumus). ... ... 3 Suy Sy
N ;
A
{ N\ S8,
Among colors. . .oai i 3 Sae s\ 'Ec
3 A
. . - N 83,
Exporimental error. ... oo 6 8200 5
p%7 2
- N }
Total @ O
| )
mean square (color) ,\\;
" mean aguare {(error) '\,

There were 4 colors—yellow, gregngvblue, and red—and 4 levels of
illumination. Each color was pres¢utéd once in the first, second, third,
and fourth order of presentation @t ench of the four levels of illumination,
and once in the first, sec-ond}’tﬁj’r’d, and fourth place in each series order.
The colors were arranged af thndom with this double restriction. I Js
to be noted that, since all\treatments are equally represented in all rows
and all columng, no 'ﬁ't'of treatment differences is included in the 1oy
and column comparisons. Thus, the effects of order and illumination
ievels were rem@’ved from the measurcment of accuracy of recognition
of colors. THedmeasurement consisted in the pereentage of the experi-
mental gubjéets who identified cach color correctly. In order to apply
the anglysls of variance to the percentages; a prior {ransformation
of thewdata was necessary (see page 165),

L An extension of the experiment to determine the cffect of the form

\Qf‘ the stimulus would require the measurement of the combined effect
of color and form. For this purpose the Greco-Latin square could be
used, in which each color and each form would be combined so that one
and only one combination of each color form oceurs. Sych color-form
combinations would then be handled as a Latin square.

Factorial Design. A formal experiment is designed and exceented
with meticulous care to provide answers to definite questions. The worth
of the experiment is contingent on how wisely the questions have been
conceived and formulated. It is fundamental to understand thorougbly

the purpose and ultimate applicabilily of the experiment. A big advan
tage for complex experiments, that s, those designed to secure answWers
to a number of definite questions, lies in the fact that they afford results
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of wider applicability than do simple ones. Until recently, it was
regarded as cssential that an expceriment should be simple and restricted
to answering u single question regarding the effcet of a single factor. It
is important in setting forth the plans of an experiment to answer the
gueglions which prompted the research, to list all the variables that might
conceivably influence the vesults. Thue attention must be given to the
possible resulls and their interpretation. Even after listing all ithe
variables that cecur to the experimenter, there are others which are not
suspected., As many as possible of the variables nced to be controlled.
However, it is usually desired to secure comparisons under a wide raﬁge
of conditions of eertain variables. In earrying out comparisonghof two
treatments, for instance, under the same conditions, the relaive efficacy
may bo accurately determined under certain fixed condifivns. How-
ever, unless these experimental conditions duplicate the practical condi-
tions, ihe findings of the former may not be applié{rble at all fto the
latter. An average value of the ratio of the medshueés of the treatment
effects over a range of conditions is usually the qUdntity wanted in prae-
tical application. In experiments based on e assumption of controlling
all factors cxcept the one under investigation, it is often observed that
the results change from one experimqﬁt. ¥o another of the same kind.
The difficulty or impossibility of edntrolling or isolating the various
factors involved in experimentation precluded conclusive results in most
cases of the traditional “condblled” experiment. Iurthermore, as
pointed out above, it is us ally most important to observe the effects of
factors in ag nearly a nadni.k setting as possible.

The desideratum ﬁ\ éxperimentation of observing the cffects of
varying all the essefifial conditions simultaneously rather than onc af a
time attains a sibstantial rcalization in the modern methods of design
devised to copé;'wit-h this problem. A very eonsiderable advance has
been brouslt about by the factorial design in experimentation. In this
design, a,lﬁ\}t{'-he factors to be examined are varied c-or?currently in ‘all
POSSibLé Pombinations., The principal advantages of 'FhlS type o‘f design
oyENthe traditional experiment planned to examine a single question, or 4
sinple fuctor, consist in its greater efficiency and comprehensweness.:'.
This superiority is achieved through the fact that in a factoria.l experi-
ment, every trial contributes to the answering of every question with
almost the same precision as though the whole experiment had been given
over 1o anv one of them. In addition to measuring the effect of each
of the singie factors, the measures of the effects of the i.nteract-wn of all
combinations of factors are made with the same precision. The lat-te.r
advantage is especially great, since, with separate SinglL‘-:F&CtOI' eXperl-
ments, information could not possibly be deduced concerning the inter-
action of the different factors.

The investigation of the interactions, though a highly important
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consideration, frequenfly was overlooked completely unfil appropriate
means for the measurement of these interactions were developed. A
third distinet advantage of factorial design is that this plan gives results
of wider applicability than do single experiments, since the exact stand-
ardization of cxperimental conditions preseribed for the traditional
experimental design gives information only in respect 1o a narrowly
restricted sct of conditions. In the factorial design the ingredients may
be varied, that is, applied at different levels, whercas in the single-factor
experiments standardization requires that the other factors be kept
constant. Rarcly is it possible to achieve the degree of standatdization
required for econclusive results. O\

A Factorial Experiment in Psychology. The principles of factorial
design are illustrated by presenfing the design and thé analysis of the
results of an experiment in psychology. 7.\

The peychological experiment! consisted in deterniining the difference
Hmen (1.1.) of subjects for weights increasing’ah ¢onstant rates. Seven
different standard weights—100, 150, 200, 25(»300, 350, and 400 grams—
and four different rates of 30, 100, 150, And 200 grams per 30 scconds
were used. Tour men and four wonben’ constituted the experimental
subjects. Two of each sex were narmilly sighted; Lwo of each sex were
congenitally blind. Five diﬁerenn:é"liﬁmn values were determined for each
subject on each of the 28 rate—weiéht combinations. Theorderof presenta-
tion of each sombination wag established in advance by the usc of Fisher
and Yates's set of randonfgample numbers. The reality of the gubject’s
TESpOnse was c-hecked%j{fatch gtimuli randomly introduced. The entire
experiment was repeated on each subject after an interval of one week.
Thus, fthere \\-'erei"Z‘SD D.L.-values for each of the eight subjects. The
experimental gitangement may be called a 4 X 7 X 2 X 2 X 2 factor ial
design, thq,&;is\, the combination of 4 rates, 7 weights, 2 sights, 2 sexes,
and 2 dates:

Thé mean. D.L.-value of five trials for each individual on each of the
weighi*rate combinations for cach of the 2 dates was the basis of our
Statistical analysis. Let us designate the notations for the different
variables. The individuals were clagsified into two sexes, the male
being denoted by I and the female by II. Each sex was classified into
two sights: the normal denoted by A and the congenitally blind by B
Each individual fried seven different weights: the weight of 100 grams is
denoted by 1; of 150, by 2; of 200, by 3; of 250, by 4; of 300, by 5; of
350, by 6; and of 400, by 7. Each weight is combined with each of the
four rates: 50 grams per 30 seconds is denoted by a; 100, by b; 150, by ¢;

' For a detailed description of the cxperiment, the mathematical solution of the
problem, and the complete analysis and interpretation of the resmlis, sec Ref. 4
The assumpiion underlying the analysis of variance, that exporimental errors are
normally distributed with a common variance, was studied by plotting the erTors
hoth for totals and subgroups. Within the limitations of the method, the assunpe-
tions appeared satisfied,
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and 200, by d. Observations of each individual trial were obtained on
two different dates: the first date is denoted by «, and the second by 3.
Hence, we have 2 X 2 X7 X4 X2 =224 subgroups. Furthermore,
we have two people for each subgroup, denoted by (1) and (2). Alfo-
gether, then, we have 448 measures of D.L.-valies (sce Table 89).

Mathematically, each measure is denoted by Nas, which ig the
score made by the tth individual of the sth sex and the ith sight for the
jth weight and the kth rate on the /th date.  The mathematical expression
of the D.L-value of the {th individual in the sth sex of the ¢th sight on
the jth weight of the kth rate at the Ith date is ~

X =A+ B+ Ci+ D+ Ex +Fo+ Lo + Iy + Lu '
N P E iV 70 ol I S TR o \"\\’
+ Loy 4+ Lea 4 La + Foe + Fopr -+ Lo (N (13.09)
A Tin + T 4+ L + L -+ Loge + 16T
A Teme 4 Lre + Lzt + Lowin + 2ol
where the subscripts s, , §, k, I, and ¢ refer to w0 éight, weight, rate, dafe
of the particular {th individual, respectivelygyd is the grand mean of all
individuals; B, €, D, E, and F are the mcddures of the main effects with
respect to their own subseripts; the L5 Arc the measures of interactions
with. respect to their own subscriptg;and zu is experimental error.
The mathematical solution Qf‘%h'c problem for securing the maximum
likelihood cstimates of each of vthe components in (13.09) is the same
ag that used in Chapter XTI In order to save space, we shall simply
summarize all the resultd given in Table 90.
We wish to evaluateé the 33 terms (listed below) in order $0 obtain
all the sums of sqﬁres for the complete analysis of variance. To geb

the value of the ferm Z E E z 2 Z X%, Wo simply work out the sums
\J A

" LI .
of squarg::s;,af all the figures in Tuble 89. There are two methods 10
e\'alu%‘}\ng each of the other terms. The first method includes t}%ree
stepss (1) work out the squares for cach sum of scores in the appropriate

- tehla;? (2) add the squares; (3) divide by the appropriate pumber which

Pefers to the individual measures involved in cach sum of scores. The
second method also ineludes three steps: (1) work out the square for e'élﬂh
mean score in the appropriate table;? {2) add these squares; 3) multiply

2 < Appropriate table” refers to the table set up for securing the sum of scores fﬁ;‘g
mean of scores required in each case. Since there were 37 tables required, they aes
not reproduced here.  We shall illustrate the proeedure in obtaining the sum of Bé‘gfng
and the mean of scorcs for cach subgroup. The sum of scores Is obtained by 8067
the seoras of (1) and (2) of Table 8. Thus: 4.5 + 14.0 = 18.5. The mean 5007°

obtained by dividing the sum of seores by 2: &25 — 925 Mathematically, the S5

of scores is denoted by szmn, where E means the summation of the %0 indi-
¢

. E . th
viduals; and the mean score is denoted by X.ije., which is the mean geore of the #
sex and the 7th sight for the jih weight and the Eth rate on the Ith date.



301

APPLICATIONS OF THE PRINCIPLES

Cap, XITI]

0= 3+ e) 4+ (ot et —opf g NP X o9 X JUIIRM

B A v 4 Y o (013 4 s ) — & e apEp X agRd X g

B— T HY 4 5) + (0 + 204 %) — *p| g wp X A0 X LS

b — OIS+ (2 + 04 %9) = ip) gl 21w X AqERM X IS

8 — (F WA+ (o) — g O1up X BYBLX Xog

b — (f+ 4 A (fa-f o} %) — p | g yep X JyFom X xag

B— (44 W)+ (o % 29) — P gl agRI X oM X X0y

6— I+ + Py et 24 10) —tp| 1 VYR X JGEIS X X3y

6 — ([ 4o+ T oo+ vo 4 19) — 3p} g otz X JuBIs X oy

B—(f+y+ )+ (o424 2) —1p| g MR X S X xog

~ IaPIO DE

B+ (F+ T HART o) —

(Mo 4+ %9 4 ta w4 t8) 4 (vip 4 op o B ip) 3| g1 [YEp X} M X YFam K I
B+ OfF 1 5[5 =

("2 4 62 4 %2 + 70 - 'a 4 %) + (Vp 4 p + p A 0| g1 218P X 2381 X Jqdpa X xog

b4 I I+ o+ 1) 7,
("2 4 24 % Yo to £ X0) 4 (p  p+ tp i) LB

arep X 0EI X 1qIE W ey

F+ CL+ I+ 0¥ ) — 47

{82 4 ta 4 13 4 ¥o | 23 | Ta) +..ma.h.u + fp o 4 Ip) — % ..@ ) 7 216D W 1gTem X e K Xeg
B CFF 4 S+ ) - “
ot fftttatiat i)t (ptp+ip+p -2 g1 (. aimE X FRA K ySE X 1o
: K/ Iopao pag
=42 i=d T=d =42 S \
- W + % W - p + % W —q| 81 e S18p X A1RI X YoM X 14IE X xey
g ot o1 g AV
£ IPIO T
WOTPFBIDTU]
J— ¥ZT JOLIT]
soarnbs jo mng W ». ‘s WOTIRLITA 0 92IN0gQ
2N

2K B K G K LK NI TVIHOLIV ] WL

TO4 STNIVA-FT(J IO Hazﬁmw.b\ﬁo SISXIVNY
06 CUTIV.L

¢



jCrap. XIII

APPLICATIONS OF THE PRINCIPLES

302

£
<
YO L bewloame _ 04
.\&.n\) 6 — ¢y 1 ayR(T
L&/ b—t g vy
O b=t g WEOM
,\\, b—3l Jydig
.\\\ 5—1f| X0
\\ g19ape urely
b mm.f_l e I syep X 81wy
5+ ?.w\ ] .: —_ G apep X 1yIem
&4 (¢ J\T(wﬁ Pi Q1 arel X I A
64 (of LAL) > 1 ajep X Judy
B4 (f+ &) %:5 £ ayel K 1By
6+ (¢ + 3 |§.‘ 9 LU EICE L ET
B4 G+ ) = T app X Xog
b4+ _ﬁ..\.nT H‘D — Iz ?.w B X XY
B4 3]+ 1) — 3 4 ydrom X xag
B4 (3f 4+ 1) — 12 H,\\} e X} X8
O Iapao 981
i
> )w
sarsuby jo wng Al A e TOIRLIEA JO IDINOY
W'
(ponuguoD) 06 TTAV.L ..A.u\w
7.
79"




Crap, XI11I]  APPLICATIONS OF THE PRINCIPLES 303

by the appropriate number which refers to the individual measures
involved in each mean seore (this number will be the same as in the first
method). We prefer to use the first moethod in calculation since it is
more accurate from the viewpoint of significant figures. We use the
second method, since it is simpler, in the presentation of the formulas.

By following the working procedure indicated in method 1, the values
of all the 83 terms for our problem arc obtained as follows:

a=EEEEZEX2%=441140..30 N
22222(233“‘) ZZZZZ( ?H)'4Q67{)24q

e SETEEE T W FTN @ - warman
C EEZZ?Z"“"”‘Y 33 -
RPN ) TIIT 0 -
- 2222 (2?{“)2 _ 42222 (B2 00 = 370,451.44
PRI PN ) AR
4 = 2 (:25% Y xe) 2550 0D (i) = B2
d4=EZZ(ESZZXM)LSZJEZ( ..... ,.) = 368,014.35
¢ :ZZZ(E%ZLWY516222(‘2 = 11,8009
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X sinie
ds EEZ(ZE}: “)--—28222(\2 . = 305,342.11
Xy .
dr EEZ’(EZZ 1) — SZZZ (£2,,.) — 346,776.80
X 1kt *
2 EEZ(EEZ ) =160 0,0 (%0i.0) — 20852533
\ X, ’ . .\:\'
dg=222(2§32 M) zzgzkzg(\ “;_31193040
Xoipen * - '\
dw:zzz(zgz ) :8222{} ) = 331,333.72
TN
IPPPETD RN
e = —2—F 112t =:11’2 . Z, (X%....) = 33424315
YV T Xt
e = 22 (/7( %ié : I‘,T'E'}) = 3222 (X2....) = 310,616.80
N LI
33=Z;(2€«§\;g* ”) _06ZZ(Y L) = 365,004.64
D OMINPIELT B
e = Al ’lfzf = 112/4_2,( ,) = 308,428.40
al -
STIOIT Ty
\::\::.'éa =13 s 55 t = 3222 (X2, ) = 29257743
4 X
gg = ZZ (Z 251262 ) = 5§ 22 (}?2. ) = 3417734'4]'
Xaijrae
er = EZ Q“: 211222 =) 11222 (X2;..;.) = 288,609.87
Y x,;
es = Z’Z‘ ( EE(/T( ) 160 ) (X2, ) = 33014120
ik
¥ x, i 2
. 22 (2 Eg%é e ) _ 3222 (X2.,.,) = 279,28248
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DD

= 58 ZZ (X% ., ) = 328018.72

Gao 56
XOPIIPELDE

fo= At =2242(X3 _____ ) = 308,303.02
Q220D Kew) _

fa = +A—2 "22‘4‘ = 2242 (X2,...) = 288,570.16

; ~

OPRRPEE A

fo = is ’“Gi : = 642,(5(?_,-_”} — 278,678.28-
JEIIIYxa) o oS

fi = st ’11‘2‘ = 1122(X?,‘k..,155‘327,841‘31
S (2% Xeiwn) N

fi = A— ’22"4‘ — 224 E&X?l} = 270,885.61
EIVTTY X)W\

g =2 S\248%7 ... = 276,769.37

*

Substituting the above valyes in the appropriate formulas of Table 90,
we obtain the specific sum’s{ﬁt\squares necessary for the complete analysis
of variance. X\~

We first test the dignificance of each of the interactions® of which
there arc 10 of the &ust order, 10 of the second, 5 of the third, and 1 of
the fourth orde»(ﬁ 1t is customary to call the interaction involving
9 factors andfteraction of the first order; one involving 3 factors, 1 of the
second ordéryand so on. The test of the significance of these interactions
is givep,fij'z Table 01. It is noted thab ihe following interactions were

si niﬁca\,nt: :
%\ / sex X sight X rate gight X rate
gex X sight sight X weight (doubtiul)
sex X rate

The significant (including the doubtful) interactions were retained
as specific components in the analysis-of-variance table. The statisti-
cally non-significant interactions were incorporated in experimental error.

The complete analysis of variance and the results of the corresponding
iests of the respective hypotheses are miven in Table 92.

3 When two or more factors are i volved such that increases or decreases in one
{or more) influenee increases oT deercases in the other{s), or vice versa, inleraction 18

said fo exist. .
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TABLE 91
Tesrs 0oF SICNIFICANCE OF [NTERACTIONS AS SOUROES OF VARIATION
L. | Bum of | MMean . Test of
Source of variation DY squarcs | square £ by pothesis*
Frror.....oo o e 221 ] 34,438 1T I e
Sex X sight X weight > rate > date | 18§ 270 18 | ... .. Accepled
Bex X sight X weight X rate. ... | 18 320 18 ..., Accepted
Sex X sight X weight X dute. .. ..., 6 379 63 [ ... .. JAccepted
Sex X sight X rate ¥ date. ... .. o 3 60 20 | ... .. Aecepted
Bex X weight X rate X date...... | 18 538 30 | . e NSy Accepted
Sight X welght X rate X date. ... .. 18 205 11 NN Accepted
Bex M sight X weight............. | & 1,406 234 4 .52 | Accepted
Sex Xosight Xorate.. ..., ... R 3 2,210 736N 4.80 | Rejected
Sex X sight Xdate... ... ... .. ..., 1 270 . 2270 1.75 | Accepted
AN
Sex X weight Xrate.... .. ... . ... 1% 215000 12 | .. ... Aceepted
Bex X weight, X date. ... ... .. [t G3TN w6 | ... .. Aceepted
Bex Xrate X dale.., ... .. 3 9 Vo 20 ... .. Accepted
Bight X weight X rate. ... ... ... .. 18 | &L 654 36 (... .. Accepted
Sight X weight X date.. .. ... ... G\ 340 Tl Accepted
Bight X rate X date . _....... ..., o3 14 N Accepted
Weight Xrate X date...... ... {8 h27 20 | ... .. Accepted
Sex Xsight . .............. o' 1| 14,230 | 14,180 | 91.75 | Rejected
Sex X weight N 6 405 68 | ..... Accepted
Bex X rate....... 3 5,720 1,907 | 12.38 Rejootad
Bex X date......... .. 1 9 g Accepted
Sight X weight....... \\ N 6| 2,089 348 | 2.26 | Remains in
doubt
Sight X rate 3 2,083 694 | 4.51 | Rejected
Bight X date. ., 1 4 4 1. ... Accepted
Weight X rae. 18 a0l 22 1., ... Acrepted
"\
Weight Xdate............. .. .1 8 488 81 |..... Accepted
Rate ddute.. ... ... ... . . . 3 61 20 )..... Accepted
7S
#\\7 The hypothesis tested is a null hypothesis concerning the variation in the same
row. For example, the hypothesis regarding sex X sight X weight X rate X date 18
| that there is no significant interaction bebween sex, sight, weight, rate, and date.

The tests of significance resulted in the following conclusions:

significant main effects: sex, sight, weight, and rate
! significant second-order interactions: sex X sight X rate
! significant first-order interactions:  sex X sight

: sex  rate

\ sight X weight

| sight X rate

| It is worth noting that there was no significant difference between
g dates and that no interaction including dato as a component was SIE”
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niticant. This result demonstrates that the observations were conaist-
ent among themselves.

TARLE 92
COMPLETE ANALYSIS OF VARIANCE oF D.L.-ViLUEs
Source of variation DF. Sm _Of Mean F Test of
_ suares square hypothesis*
Tesidual .. ..o oL 419 41,602 100 ¢+ ool L .
Sex X sight Xrate, ..., .. 3 2,218 730 7.3% Rujecte}
Bex Xosight.... . ... 1 14,130 14,130 141.30 Rajected
Bex HMorate. oo, 3 5,720 1,907 19.07 dicipcied
Bight X weight. .. ......... ] 2,089 348 3.48 \Rejéotod
Sight X rale. ... .......... 3 2,083 694 6888 | Rejected
BeN . e 1 31,534 31,534 31N Leforted
Bght. ... .ol 1 11,810 11,810 L8710 Rejeeted
Weight. ... ... .. ... i} 1,900 1R [N 3.18 Rejeeted
Bate..................... 3 51,072 17,024 170,24 Rejected
AN

Dato.ooooo oo oL 1 116 & 1} 1.16 Accepted

Total....o.oooooiia 447 164,371 o ‘ S

* The hypothesis tested is a null hypothés}s regarding the variation in the samo
row, Tor exampls, the hypethesis concerning date is that there is no significant
differcnce between the date means. LN

From the standpoint of jke efficiency of the factorial design in this
experiment, it can be sa.igli’t-];ht we have tested 26 hypotheses regarding
interactions and 5 hypr)t&heées concerning main effects. If we had used
the single-factor plangdf experiment, we should have required 56 experi-
ments for testingyth& main effects of rate; 32, for weight; 112, for sex;
112, for sight; a,Qd 112, for date. We also would have had to repeat
the #-test fop4<x@x2x2 = (32 times. Furthermore, no information
would be possible concerning the interaction effects.

The Broblem of Prediction. The regression equations of D.L.-values
on cadh)of the factors and interacting factors, which were found to be
sighiﬁ%s;nt, can be determined. With these equations it iz possible to
compute D.L.-values for any particular value of the independent variable
within the range of factor levels used in the experiment.

We shall illustrate the use of orthogonal polynomials for determining
the rogression equation for predicting D.L.-valucs from weights.*

We proceed to work out linear, quadratic, and eubie regression equa-
fions. Only the linear coeflicient was found significant here, but the
methods of calculating the latter two are also given.  We shall show the

£ For the rezression equations of the other significant factors in this study, see the
original a.rticlc,gI{cf 14, thher useful references are 2 and 10, particularly 10, for the
discussion of the meaning of the linear, quadratic, and cubic terms.

I
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method of separating effects associated with more than one degree of
freedom into component parts that are mutually orthogonal. Beeause
of the latter property, the components may be catimated from the data.
If in our experiment there i only 1 degree of freedom represeniing the
tested variation, for example, sex and date, there can be only a linear
relation between the two levels of variation and the D.L.-values, If
there are more than 2 degrees of frecdom or more than 3 levels of varia-
tion, then thesc can be separated into component parts—lincar, quadratie,
cubie, and so on—that are mutualy independent. Fwen when there are
more than & degrees of freedom or more than 4 levels of variatign, we
usually do not ealculate terms higher than the cubic. . o

We firgt record the means of the D.L.-values found for, S.m}} weight

and transform them as follows: . \J
W (weight) || Y (D IL.-value} l T W'\" Y
100 28.7922 N3 3.9368
150 26,4147 R 1.5587
200 25.6342 O -t 27790
250 23.7455 ()" 0 —~1.1100
300 23.8297 o\« 1 —1.0857
350 23.2563 N 2 —1.5591
400 223156, 3 —2.5897
W = 250 Y = 248531 St = 28
. PRNY
W — 250
where z = — o= y % X' 24.8554.

We then rcfp\i”iiti‘the tables of Tisher and Yates on orthogonal poly-
nomials (Rexf,\@;);for N =7, which reads:

\:»\:.
RN\ & £ 24
mJ
\ ) -5 5 —1
—2 0 1
—1 -3 1
0 -1 0
1 —3 —1
2 0 ~1
3 ) 1
I =28 2 =84 & = B
M= 1 M= 1 Ny =

Finally, we obtain all the regression equations as follows:

Linear: T = o+ e (13.10)



Ciae, NIH O APPLICATIONS OF THE PIUINCIIL b= I3
where e = ¥ o= 24,8551
\.:F
[ :“L}'_Ir A
Onleadie: T A rar? (1311
u hete
. LXa ey
R .
Cubie: P =l b e bt s e TR
where g — Y IBERE!
R Xrtirs .
€y = €y - n (I;]!"\
oy = -\-:E’l.’f A ki‘ \
s *\
Xy %
2 \'Nc"-': Az ,u\‘ U bl
~S A\
U '\'v\ (L7
B | .\.IE;'I 3 . \: .

The caleulation of 1he

regression cocilicients Q\
’\ w

weighls is carened

eitl s follows: ‘.\{'
_ — S,
i N AN ) _
i | & L'y R L {. i
0,’&
: ‘:{\;
FAmes . =3 LIRS 10 s ! Gomiey
; i oaosr | —2 - "f.!!e‘.;‘:’,‘ 0o Do | 1. Ay
r 0. 77480 —1 — 0.7 A ERANT ‘ 1 ([t H
- (‘{’xo( -5 1 i 0o T
0 :_f.fr‘:f,l 0 [L_ J i i o1 I puieed
L ST 1 § é-’ NTH -3 REin ! I LENY
2§ hunt 2 s§\ ‘rone v 0o |- 1 Subl
R4 4G ’i \, "~ N Aoy enas | L
RIS 5 ; et ey [zi | Sy
=d\\) = —OT.H0N . e 8P 1O WO
.’&5/] T he o= 1, Ay - .
—_ ”\ v/
B :1~m@kquxlton» (13130, (0314, 13008y, (1306, and (13,175,
we nh: (i
" o cr = 24.85354 e = LHIS20
s' -
\\> e = —.983021 ey = — {2056
/ L 3 Y I
ey = 21270

llenee, the regression equations can be obrained by substituting these
values into Fyuations (13,10), (13.11), and (13,121,

-
f.
-
II

Linewe:
Quadleut i
Cubie:

where ¢ =
5!

218554 ~ .083021x
24,2761 — 083921 + LHRS207
212761 — 083021x + 1 HN20s°

— 250

50

— 203607

il3 18
11310
BERIE
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The test of significance of the components of variation due to weight

is given in Table 93.
TABLE 93
COMPONENTE oF VariarioN Dui 1o Woeanr

L L | Bum of | AMean | . Test of
Source of variation D.F. squares | sguare | f hypothests
—— - i -
Tanear. ..o e T 1TEA 1735 | 17.35 Rejected
Quadratie.............. .o oo 1 3 113 1.13 Acgepted
Cubic.. ... . oooooniiii e I 2F 20 Lo : Act&Jtcd
Remainder .....................0 3 | _ 47 © 12 | ..... Padtreptad
Woighls. . ... ... ; 1009 ‘ . \ N7}
| :s 2

It is noted from Table 93 that only the lincar (.-.omp.(}'f]‘éi’it is significant.
Hence, only the linear equation is to be used in prédietion. The graph

A0 \J
> w
(N
ny
\"
A\
| )
35 « \J
R Y
&N
R R v
o !

S/vvw— L : 3 i 3 I —_
100 150 200 250 300 350 400
Weight (grams}
Figure’8. Linear regression line of the equation for predicting D. L. values
from weight values.

of the linear regression equation for the observed D.L.-values is sketched
in Fig. 8.

Factorial Design and Covariance in a Study of Educational Develop-

menl. We wish to illustrate further application of the principles of
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factorial design by presenting the results of an investi gation of individual
educational development.? An application is also made in this study
of the method of covariance which served to increase the precision of the
experiment. The specific design developed for this study was a 2 X 3
X 3 X 3 factorial type. The factors chosen for study were the 2 SEXES,
3 scholastic standings, 3 individual orders, and three school grades.

In addition to the introduction of the covariance method for control-
ling variables not controlled or controllable directly by the experimental
design, this experiment differs from the one in psychology just reported
in that the type of factorial design is of the kind in which absolute tepli-
cution is dispensed with and hidden replication is involved (Réfh 7).
This type is desirable when large numbers of combinations afe)ested
simultanecusly without repeated use of each combinatiofi’y® All the
independent comparisons contained in the experiment are.alletted to the
factors tested and to their interactions. Since there jsho independent
eomparison aseribable to pure error, the highest ondier” interactions are
employed as the basis for measuring the precisiptvof the main com-
parisons. The situation in this study has 8, VEry wide oeccurrenee in
research worlk.

The eriterion score used as a measmb.of the stage of educational
development was based on a composite seere comprised of the scores on
nine scparate tests (Ref. 13). The standard scores used—ranging from
0 to 30 with a mean of 15—were deférmined from the combined grades,
that is, the tenth, eleventh, and™svelfth grades, There were 18 students
from each of the 3 grades, all ehosen at random from the iotal number
enrolled in these grades. ,{The mental-age scores were obtained from the
administration of a groﬁ;} test of mental ability and were caleulated for
all students as of thé same date. All students in the tenth grade were
of chronological Jage’ fifteen; in grade 11, sixteen; in grade 12, seven-
toen. Student@were classified into one of three scholastic groups—good,
average, poot—based on their honor-point ratios. Individual order of
educationa] Mevelopment was based on the size of the scores of the
individuals on the second of the two administrations of the battery of
testssn\JThe interval between the two administrations was 12 months,

%6t us denote the final score, the initial score, and the mental-age
score by ¥, X1, and X, respectively. Again, the two sexes are denoted
by I for the male and II for the female; three grades are denoted by A
for grade 10; B, for grade 11; and C, for grade 12. The three scholastic
standings are denoted by 1 for the good, 2 for the average, and 3 for the
poor; and the three individual orders by « for the first, 8 for the second,
and v for the third. The primary data grouped into the several sub-

vais of the experimental results In this investigation, their

b F : al t
‘or the complete an hematical formulation and solution of the problem, read

interpretation, and the mat
Ref, 13.
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classes in accordance with the notations specified are presented in Table
94. _
TABLE 94
ScoRES FOR ALL SEX X GRADE X ScHOLASTIC X INDIVIBUAL COMBINATIONS

Yy x» X Y X, X, Y X X

_ ' ' N\

@ 30 28 45 26 22 G 29 23 60

1 8 25 22 58 | 26 20 37 | A0%24 88
v 22 19 46 | 21 21 65 l22V19 84

o 26 22 56 | 24 25 FR\| 23 2L 64

1 2 3 17 14 19 | 23 1805 | 20 17 47
v 14 14 29 15 1842t | 19 17 75

« 18 18 34 | 1BNIT 40 | 17 16 29

3 8 1 14 17 M6 13 24 15 15 38
p iz 9 19¢j13 12 23 | 14 12 28

« o1 160 | 26 22 60 | 33 29 94

1 3 21 21.44 | 25 22 57 | 29 29 89
¥ 19¢97 6 23 19 52 25 22 78

@ w20 18 88 | 22 19 54 | 23 2 B0

II 2 8 | 18 16 27 21 18 54 18 19 57
AN i4 14 18 17 16 52 17 17 43
L 3}

A\ 14 ¢ 18 | 19 17 40 | 15 13 36

3 S 12 7 18 15 12 28 15 14 85

Sy b e 7 5 | 13 12 48 | 10 9 14
A\ l

In our Qréb}em, wo define:

Yan .'“\—'-Q‘-ﬁe final standard score of the tth individual of the jth scholastic
standidgiin the 7th grade and the sth sex. )
"'sX.};,-,._, — the initial standard score of the fth individual of the Jtb
sthélastic standing in the fth grade and the sth sex. .
X, = the mental-age score of the #th individual of the jth standing
in the 7th grade and the sth sex.

Tn the above definitions, s = 1, 2;¢ = 1,2,3;7 = 1, 2, 3(ht=1 2,3

We then proceed to obtain all the sum of squares and products
required for the analysis as shown in Table 95. Thesc are listed below,
together with the notation for each quantity. We shall illustrate how
these values are obtained by two examples.

Exavere 1. In order to evaluate the term E S‘ 2 S‘ Yz, we simply
5 -sf-( 7 LtJ
refer to Table 94 and work out all the squares of the Y-measures. Then
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we sum these squares and obtain the required value, for example, a,
= 22,730,

TABLE 06
Sum or SconEs ror Eac Srx X Gnape X Scnonasmc COMBINATION
Grade A B o
Yo,
Y 7
ey, o Catpg
Sex “any TV X, ¥X. | Z¥ =X X, | 2Y BX: ZX,
Q)‘d
N\
1 77 60 140 | 76 64 184 | RO 68N21Z
I 2 57 50 104 62 56 133 6299 186
8 47 41 70 | 47 42 BT | pev 23 9
1 61 54 94 | 7T+ 63 160187 80 261
1 2 32 48 83 60 54 JGDYS| B8 b7 140
3 35 23 41 | 47 ALME | 40 36 85

Examrrk 2. In order to evaluate the ’(-u,t‘xlﬁ\\:

Y X, :*.t}sm
PR L

i

we refer to Table 96, then conipute all the products of Y and ZX.In
the same row. We then at@l these products and divide by 3 to obtain
the gquantity: by = 19,786,

The sum of scores for each sex X grade X scholastic combination
as given in Table 98\was obtained by adding the scores for a, 5, and v
as given in Table’9¥®’ Thus: 30 + 25 -+ 22 = 77.

By followm@s'imilar procedures as illustrated for Tixamples 1 and 2,
we obtain a‘.\l{the values for the 96 terms extending from ¢; through &s.

Here, e "shall present the results based on one analysis only:® the
con}p}eﬂe analysis of variance and covariance partialing out the effects of
b&%l‘;jiﬁtial score and mental age.

alues required for obtaining the sums of squares and products

gpecified in Table 95:

a = E E Y E Y2, = 22,730
g8 1 F ¢
a2 = E E Z{ Z X3, = 17,926
. s under-

¢ For a complete analysis see Ref. 18, The examination of tlhe agsumpiion .
lying the analysis of variance and covarinuee led to_their acceptaned 1080 ar as J?Uc?i’l
could be tested. See pages 218-210 and Ref. 1 in Chapter X, and pages 251~2601
Chapter XI,
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a4 = E Z Z Z X3, = 127,369

g = Zz ZE (Xlﬁjaysift) = 20,116
a 1 §

as = Z E Z 2 (X2us Vo) = 52,005

ag = ZEZE (X1 X0,,) = 46,227
2 £ § &

333
333
333
333

Forss
o333
SR
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(37
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(JZ Yseﬁ)

i 3 i

r(Z Yir) |
3 -

(3 7]
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(Z XW) N

[ AL )
82
/
tit
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3 i
(3]

[ = 17,643

(35
(3 o) ]

3 |
Zai i

RS

= 116,146

3

= 92,348
= 21,565
= 22,500
- 22,.5‘539
N 17,565

= 16,939

- 17,7112
= 122,832

= 113,596
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(2 %)

333 ]

o333
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=33
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Qx) Q)
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(3x. )(EY )|
'(En )(EY e)i

L= 51241

= 10,786
= 19,081
= 19,891

_ 1959?‘\7""

.\\,,‘

= 48,422

= 50,734

= 51,639

= ‘1’5.“]:99

= 43,010

— 44,924

= 45,882
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= 22,191

= 21,447

= 22,259

= 21,482
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da1 = z = = 104,877

3 27 J
Q22 %)
daz = Z I = :is |= 110,645
(E Z E Xﬂ.ﬂ'f’#) 2—|
dss = Z, _—“—1—‘18— = 114,036
EI3Yr) S
e=| & = 21,123 O\
— '\
(2222 %) ] A
e = | ——Tpt = 16,503 O
(B2 22 %) Nt
o5 = ——ﬁ——-— ~ 104,808
OORRED ORI
ey = __.-‘* T = L.é___ = 18,670
(Z E z Z Xzsv'g'é) “(EEE Z Yen'it)
oy = | i 4t E&_swﬂ = 47,051
r n) ¢ ’i."
R D IOPRECH
cs = __La__i_t__ﬂﬂ_s_i_f_.‘_-—— = 41,588

The applics;t;l%ﬁ of the method involves the caleulation of the sums of
gfuares of\o\lgie dependent variable and of each of the two independent
variableg\and the sums of products of each of the independent variables
\ﬂ-‘itl;;\th\é’ dependent vaxiate to be adjusted and with cach othier. These
vallyep are obtained by applying the appropriate formulas in Table 95.

Wo first test the significance of the interactions. The complete
analysis resulting in the tests of significance of the several hypotheses is
given in Table 97. Since the adjustment for the two concomitant
variates has been obtained from the error term, 2 degrees of freedom
ascribed to error have been ased in evaluating if. The reduced sum of
divided by the corresponding number of
degrees of freedom to gbtain the mean square (1.41) appropriate o test-
ing the significance of the remaining interactions. No significant inter-
action was found. Therefore, 44 degrecs of freedom became available

for testing the significance of the main effects.

squarcs assigned to error ig
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The complete analysis of variance
and covariance of the final scores,
partialing out the joint effect of initial
score and mental-age score, is pre-
sented in Table 98, The analysis,
which has used all the evidence of the
relevant duta, led to the conclusion
that there was a significant ditference
among the means of the final scores of
the scholastic groups and of theindi-
vidual orders of developmenttwhen
adjustments woere made farthe differ-
ences in initial and me 1113?1-*109 HeOTes.
The differcnce be,t-\\gxau the adjusted
means of the sexgf/Was significant at
the 5 per cent lé'i-'}l.

The wholgprocedure of making an
exact test/df $ignificance based on the
reduced 3y® when there are two inde-
pendent variates is llustrated for the
tewh ‘of signiticance for ‘‘grade” in

JBable 99.7

PropLEMS

1. Design an experiment to determine
the effect of training upon individual
dilferences.

2. Design a factorial experiment for
determining the effect of practice
of different levels and kinds upon
transfer of training.

3. Design a factorial expenment o
determine the effect of various
lengths and frequencies of intervals
upon learning & fundamental pro-
cess in arithmetie.

4. Design an educationa e\penment
which makes use of the Latin-
square arrungement.

5. Devise a method of comparing the
efficiency from the use of the follow-

7 For the detailed soluijon of the problem
of estimation, sce Ref. 13.
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ing three different types of experimental design: Assume the experi-
ment 18 designed to detcrmine if there is a differential effect of three
different treatments (for example, different dietary treatments on
school children}. TLet A, B, and C represent the three treatments; O,
the dursmy Lreatment; T, IT, IIT, the three school terms. In Design 1

the possible diet sequences are givenby 1,2,3, . . ., 24
Dusien 1
123455789101112131415161718192{]21222324
Srhool I|0O00O00QAAA AAABBBBBIBOC CCCC A
term IL|AABRCCOOB B CCOOAACCOOA ABCB
IIT‘_BCOA;\BBCCOOBACCOOAABBQOA
i 28N
AN
DEesiaN 2 \.
| R%
12345678 D
Bchool IICOABACEO PA\Y
torm II|COABACBO 4
III|COABACBO \
~

W

In Desgign 2, the same freatment is @dﬁiinistcred to the same child
throughout the three school terms. | Tife treatments are randomized
in blocks of 4 children, who are s'e]:'edtted to be as alike as possible.

Basioy 3

‘1234l5678m\‘
School IIDBCACCBA)
term 1II;BACO om\ig
Y ‘ ACO 13,lL ABO

¥

In Design 3the treatments within each block of 4 children for each
term a.m\ffaoﬁndomized.

6. Assunie there are 15 persons who are to be invited te 39 dipnf%rs, .zmd
ﬁhat:fa""pcrsons are to take part in each dinner. Arrange the invitations
“Por-dinner so that cach person is invited 7 times, and 2 persons meet

. a dinner just 1 time.
References

1. Alexander, Howard W, A General Test for Trend,” Psychological Bulletin,

Vel. 43 (1948), pp. 533-H57.
2. Anderson, R. L., and Houseman, - E.
Values Extended to N = 104,7 Agrt
207 (1042). o
3. Baxter(, Bre1)1t, i A Study of Reactinn Time Using Factorial Design,” Journal
of Experimental Psychology, Vol. 31 ({12"1’2}, {3[131 432_—437:1-" Funation
4, Ca v. 4. and Tinker, Miles A., “Visual Reaction-Timeasa t'u 1o
Caﬁs‘{?’gr?;ﬁfng zﬁ th;, Stimulus-Figure,” American Journal of Psychology,

Vol. 59 (1946), pp. 450-457.

, ““Tables of Orthogonal Polynomial
vuliural Experiment Station Bulletin



326 APPLICATIONS OF THE PRINCIPLES  [Cuar. X1II

5. Chapin, F. Stuart, “Some Problems in Field Interviews When Using the
Control Group Technigque in Btudics in the Community,” Americon
Soeiological RKeview, Vol VIII (1943), pp. 63-65.

Engelhart, Max D., “Suggestions with Respect to Experimentution Under
Sehool Conditions,” Journal of Experimenial Education, Yol. 14 (1946},
pp- 225244,

Fisher, . A., The Design of Experiments, 2d ed. Ldinburgh: Oliver &
Boyd, Ltd., 1937.

8. . and Yates, T., Statistical Tables for Bivlogical, Agricuitural ond
Medical Research, Ldinburgh: Oliver & Boyd, Ltd., 1943,

Garrett, Henry K., and Zubin, Joseph, *“The Analysis of Variance in Psycho-
logical Research,” Psychological Dulleting Vol. 40 (1943), pp. 233-200

10. Goulden, C. H., Meathods of Statistical Analysis. New York: John Wiey &
Sons, Ine,, 1939. \‘\

Hotelling, Harold, “Analysis of a Complex of Statistical Maxizhles into
Prineipal Components,” Journal of Educational Psychology, Yeal. 24 (1933),
pp. 417-441; 408-520, N

12, , “Some Improvements in Weighing and Other/Pixperimental Tech-
niques,” Annals of Mathematical Stalistics, Vol X‘\;Zf(\i?}-i-i), pp. 297-306.

13. Johnson, Palmer O., and Tsao, Fei, “Factorial Déstatvand Covarianes in the
Study of Individual Fducational Developmf\lt,” Psychometrike, Yol. 10
{1945), pp. 133-162, 7,3

i4. —, and , ‘' Factorial Design in jdfe Determinution of Differential
Limen Values,” Paychometrila, Vol. 9 (AAd44), pp. 107-144.

15. Lindquist, B. ¥., Statistical Analysis, &% Edueational Heseorch. Boston:
Houghton Miftlin Company, 194065

16. Rulon, P. J., “Fisher’s 1-Test asoay Special Case of His z-Test,” Journd of
Expervmental Education, Vol 201 (1943), pp. 245-249.

17. Shen, Eugene, “Dxperimental Dedign and Statistical Treatment in Edu-
cational Research,” Jadnnt of Erperimentel Education, V1L (1940}, pp-
346-353, ¢ &\J

18, 8nedecor, G. W., Sialistical 3 ethods, 4th ed. Ames, Iowa: lowa Collegiate
Press, 1946.

19. Yates, T, “Comylex Experiments,” Supplement fo Journal of the ltoyal Statis-

tical ﬁqcaety{&'nl. 11, No. 2 (1935), pp. 181-247. ]

,_/Fhg” Design and Analysis of Factorial Experiments,” _Im_perml
Bureawof Soil Science, Harpenden, England, Technicel Communication 35
(1937 )

21. —==, “Incomplete Randomized Blocks,” Annals of FEugenics, Vol. ¥ IT,
P, 3?111“0 VI (1936), pp. 121-140. ] N

22\\7?&.1(1, Abraham, “On the Lfficient Design of Statistical Investigations,
Annals of Mathematical Statistics, Vol. XIV (1943}, pp. 134-140.

&

™

o

7

11.

-

7

20.




CHAPTER XIV
MULTIPLE REGRESSION PROBLEMS

Tt frequently happens in experimental situations that we are concerned
with the problem of estimating or predicting one cbaracter from a
knowledge of another or of a number of other characters. For predictiGm
or estimation of this kind to be useful, it is necessary that & chapge.in
the variable to be predicted is accompanied by some corresponding
change in the other variable or variables. Problems of this kind’require
the guantification of this apparent relationship existing agiéﬁg the vari-
ables and are spoken of as problems in regression. R&Z

In the simple case of the regression of one variiteé on another, the

regression function takes the form N
7' = a4 bX - X" (14.01)

where b is the regression coefficient of ¥ 6 X, and Y7 is the predicted
value of ¥ for each value of X. o0

The Multiple Regression Equatidn. If, instead of having only onc
independent variste, such as X in‘the simple case sbove, we have meas-
ures on several independent &aviables, then we can EXpress the mean
value of the dependent vafiate, ¥, in terms of the several independent
varistes. This is the multivariate ease to be treated in this section.

We denote by Y, fhe value of the eriterion variable, and by X the
value of the th measarement of the #th individual, respectively. Then'
the multiple re .ﬁé;ssion equation (or, more accurabely, the partial regres-
sion equatig 'irf}'r obtaining the simple weighted sum of the measure-
ments, Y m}y he written

Ay CATPAN Y SR Y 2 (14.02)

wh&e\;it is assumed that we have the value of the criterion vm-iabl?,
Y, and % measurements of each individual. In E_quation §l4.02), ap 18
a constant; the 'z are known as the paritial regression coefficients and a.,m
also constants. Instead of the subseript by, for insttance, t?le E:ub§cr1pﬁ
¥1.23, ... ,kor 0123, . .. , k is often used. Tl}ls subscrm't indicates
more completely than b that the partial regression cocflicients f’ho“’
how greatly unit changes in the individual ¥ variables affect ¥y, mlde-
pendently and directly. The values of these constants are to be deter-

mined in each case from the available data. o
If we let yr, Y5, &y, %3 - -+ o T represent the deviations from the
? ’ ¥ R .
respective means of the varjables, there 18 No need for the term ao 1M
327
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Equation (14.02), because
Syl = Zxy = Zzg, - - ¢, = Zxp =0
Tn terms of this notation, Equation (14.02) beeomes
g = by + Daze + - ¢ 0+ b (14.03)

In order that 4 be the best linear estimate of . when *“best” 1s con-
sidered in the light of the leasl-squares eritevion, 2(y. — y;) must be
minimizcd ; that is,

(?j —_ b1$1 — bzl‘-z - = b,g-.’i‘;.-}g '{]1.0-1:)
must be minimized. A necessary and sufficient condition few this min-

imum sum of squares is that the 0’'s satisfy the follmfmrr “ystem of
equations: Y

Iy — by — bewe — -+ - 0 — )T Af Ky
Z(y — bavs — baxp — - - - — Dk & 0
o ‘ \ : (14.08)
L 2 .
R
2y — brr — bors — - AN bunday = 0
The left members of these equat-igmi;af“e the negative of one-half of the
partial derivatives of (14.04}) Withfa'éspe(:t to by, be, .. L, b
Equations {14.05) may be,jvfrii;ten in the form
hiZxl + bg?}'{c\'{.’cz + -+ e Zray = Sy
bllexg ﬂ-'bgz.’tg + - —{— bkzxg;li,!,; = :'I'zy
.\ .
_ _ ' (14.06)
3.\5,&2?12?& A b Zapxe + - 0 - A B ZEE = 2oy

Thes%bf cquations (14.08) are often called normal equations. After
compﬁt}ng the necessary sums from the given data and substituting these
V&lugs in the system of equations, it is possible to solve for the b's in order
to,0btain the partial regression coefficient. Substituting these values in
(14.03), we have the multiple regression equation in deviation form. I,
a8 is usually more convenient, the original measures instead of the dev i~
tions are used, these values of the b's may be substituted in Equation
(14.02). The value of g = ¥ ~ b.X, — - - + — bpX,, wherc the bars
denote the mean values of the several variates.

The accuracy with which the regression cocfficients or weights enable
us to predict or estimate the values of the criterion variable is dete rmnine
by computing the multiple correlation coefficient. This may be inter-
preted as the zero order, or total correlation coefficient between the actual
values of ¥, and the values ¥} predicted from the multiple re gression
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The development of multiple /7 as a measure of the
iction of a multiple regression equation may be observed

N
X = E (Y.~ Y0* (14.07)
t=1

ont the correlation between the two sets of seores, Y.
. Syt = Z(¥, — ¥)? = the sum of squares about the
iation (14.07) may then be written

x? = Ty}l — B (14.08)

Tows that the multiple correlation coefficient, B, is the
accuracy with which the criterion scores may be pre-
- also be pointed out that the multiple correlation is
he analysis of variance, that is, of analyzing Zy}into two N
ated with regression and the other a residual. O
f B, the multiple correlation coefficient, may be readily )"
the following equation: \

 BeS(ew) +heS) + o A 03w L g)
= zy \V

equations (14.06) may be modified bysdividing both
. first equation by v/ 2zl 2 % both{members of the
n by ~/Zn- 2y% and . .. of“th:e"kth equation by

~A
ation yields the following sy{tem:

By + Bare + -0 T = Ty
Biria -+ B2 1+ - ‘."\‘Fﬁ?k = oy
) K7, : : {14.10)

N
Z \V

Q

Bor, K By + -0t Bu = T

—d "‘\. N -—-—2 2‘_‘%—2
J;%:, Bz = ba J%’ -« ;and B = b \/YQTE The fﬁ"s
he standard partial regression coefficients, to distinguish
b's, the partial regression coefficients. The #'s are the
on coefficients for the variates expressed in standard
thus rendering them independent of the original uni.t.s of
nd giving measures of the comparative weight attribut-
the independent variates. Tn terms of the f’s, the mul-

) coefficient 1s given as

RZ .03,k = BTy - Barar + * - 0 T By (14.11)
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A systematic procedure often used for the solution of the system of
normal eguations (14.06) or (14.10) is known as the Deolittle method,
after its formulator, an engincer with the United States Coast and Geo-
detic Survey. Doolittle, in 1878, introduced a method which was due
to various improvements over Gauss’s method of solving simultaneous
linear equations by direct substitutions. Some modifications of Too-
little’s method have occurred from time to time, but the cssential fea-
tures of his method persist (Refs. 8 and 9). This method is applied
below, but first it is desirable to enumerate what is involved in the com-
plete analysis of a muliiple regression problem, Q

We have deseribed above the method of setting up #he.multiple
regression equation and of caleulating the ecriterion of St¥predictive
accuracy, the multiple correlation coefficient. The vales of the b's
or the §'s alone, however, give a very incomplele d{:ﬁéﬁ’i’)tion of the rela-
tionships botween the dependent variable, Y, @fdd the independent
variates, X1, . . . , Xe. They do not indicate swhether all—or, if not all,
which—of the independent variates are sigmificantly related to the
dependent variate; nor can the confidene :iﬁtizrvuls or Ldueial limits be
specified from them within which the $M0g Values of the regression coefhi-
cients are to be found. The standardwérror of the sum or the differcnce
between two regrossion coeﬁicicnts.&imy be needed.  Where no apparent
relation is found bhetween the cleh'e’ndent variate and one or more of the
independent variates, it is often desirable to omit such variates from the
regression equation. It I@y also at times be desirable to add one or more
new independent variae$ to the original battery. Occasionally, there
may be an interes ih the multiple corrclation between a cerfain set of
independent variafch and each of several dependent variates. Finally,
when predictionstor each individual have been made from the multiple
regression eqflation, we are interested in the accuracy of each indjvidual
predictiqx{la:hd in setting up a confidence interval for each individual.

To fatilitate the carrying out of most of tho above analysis, Fisher
(RefpI8) has suggested the use of a set of auxiliary quantities, Cpe
e =1,2 -+, k. The quantities Cpi, Cpa, - . . , Cps are the
solutions of the set of equations (14.06) with the vight-hand side of the
pth equation replaced by 1, and of the other equations by 0. The rela-
tions between the regression coefficients and the auxiliaries, (s, are given
by

|3
b= E Cia Zr Xg) (=12 ---,k (14.12)

For example, for the case of 3 independent variates the 3 systems of
equations are obtained by using for the right members of the cquations
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1,0, O for the first system; 0, 1, 0 for the second system; and 0, ¢, 1 for
the third system:
ALZ:B% + Azz.’!’:lxg + A;-;E.’L']xa =1 0 1]
Al}:&?ﬂ!g + Agng + A32$2$3 == () 1 0 (1413)
A12$1$3 + Agzxzxg + Aazﬁi% =0 0 1

The three solutions for these three sets of equations may be written

Ai = 011, 012, 013
Ay = Cray Cag, Cas (14.14)
Aa = 013, 023, 033 O\

Onee the 6 values of ¢ are known, then the partial regression cogflicients
may be obtained in any particular case by calculating Zmy,‘ Do, Ty
and substituting in the following formulas: \ o

by = OuEaﬁy + ChaZasy + CraZasy,
by = CreZa1y 4+ ConZaoy + 0232313'3'}
by = CrsZzwy + CosZray + Cssgxay

Problem XIV.1. The complete analysidf a regression problem.
We shall illustrate the complete analysisdf a\regression problem as it was
carried out in a study of predicting in 4he School of Agriculture in the
University of Minnesota. In this ,p’qéblcm it was of interest to secure
the correlation coefficients betweell‘the several variates. Jurthermore,
the use of correlation coefficicn# in the normal equations provides the
same order of magnitude fetall the quantities at any given step in the
solution. Their use is als“'a\advantagcous in the use of the check column
to he deseribed later. ’\'}}i’e standard partial regression coefﬁcients. rather
than the partial regression coefficients are pscd because of .the interest
in comparing the'*re’lﬁtive importance of the independent variates, which
originally werdyin different units of measurement. For this case the
auxiliary sdt of quantities, the (s used for sceuring the b's have been
supplanted by what we call the g's for gecuring the §’s. .

Welliave observed 213 individuals with 1 dependent variable and
5 'il‘kﬂgpendent variables. Let us denote the dependent variable or the
t%érion by Y, and the independent variables by X1, Xa, X5, £y, and Xs.
The scores obscrved are as follows:

Y: honor-point ratios

Xi:age

X.: Towa Silent Reading Test score

X1 Otis raw score

X: previous education in years

Xs: School of Agriculture Reading Test total score

We wish to predict the honor-point ratio from the measures of the

independent variates. The following steps are pursued:

2%
<« 3

L4

(14.15)
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Step 1. Compute all the intercorrelutions and the standard devia-
tions. Let us define:

X{= Z—fé, y E—E‘\g,xtha —X,:;j’j =Y — ?
oo 20 e W 2w, IOy

R TP R DG - iost P
PTN—UY N - DY Neg! Y Nas,

where 4§ and ¢, § =1, + + +, 5. All the measures in our case are
summarized as follows: ~

N = 213: Xy = 15.9206; X, = 161.0061; X, = 37.8498; 34, = 8.9531

X, = 90.0235; ¥ = 2.3362; &3 = 5.34245869; s = 24683860141

82 = 109.11357981; 57 = 5.26540141; § = 8714068357

s = 70191238; 5,55 = 30.27745774; sy = 24.13904430

8§18 = 5.30378069; s155 = 5000734041 ; sp80 = A63.04782712

8284 = 36.01487742: sas; = 380.31255769; sgsi = 23 96928698

838; = 253.11264376; 585 = 55.6019619150% = 0300

13 = 0983, 4 = 1100, s — 0'70,{23= 71—1-3, Yag — 0960

Tazg = 8203} 34 = 1821, Taz — 7230, Yag =— ]]2—1—, Tiy 1784

ey = .8308; 5, = 5164; 7y, = QU93; 1y, = 67041

l

Step 2. Compute Fisher’s Q&,tﬁ{ﬁiary statistics (gs)’s. The 5 systems
of simultancous equations to b&3olved are

P4\

O Right members of system

L\ 1 @ 6 @ G

g1+ riege + Tisgs™ Tugs + g = 1 0 0 0 0

1edf1 + 72 + T'ga{}a':i— T24il4 —F Tasls = 0 i 0 0 0
T13f1 + Tasffe +\ s + raags + raugs = 0 0 1 0 0 (14.16)

Traf1 + TG Taufs + Ga+raags =0 0 0 1 0

71561 J[‘;-'“{e St rasge g+ g5 =0 0 0 0 1

.. The values obtained for the g’s in the first system will be designated
by J11, 023, 31, Gas, &0d ger. The values obtained for the ¢'s in the second,
the third, the fourth, and the fifth systems will be designated by g1z, §2%
G32, Gae, A0 G323 DY 13, goz, Gas, ges, And gs33 DY g1, G2, Gas, Faa, and by gae; BY
15, a5y o5, Gas, and ges, respectively. It is worthy of note that

iy = g5 ('b #= j, ’B,j‘ = ]_, e, 5) (1417)

1 %We have used 4 decimal places in our caloulations. This is likely a mmlmuﬂ%
pumber with the number of equations and of unknowns used, As the number ©
cquations and unknowns increases, the Doolitlle and olher similar methaods of elﬂﬂll'.
nation require inercasingly larger numbers of decimal places.  For example, probably
at least 10 places would be necessary for 10 unknowns if a final answer vi 1-place
aceuraecy is wanted (Hef. 17),
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For our problem, (14.18) becomes

(): 1.0000g: -+ .0300g= + .0983g; + .1100g, + .0470g;

=1 0 0 0 0
(IT): .0300g; + 1.0000g; + .7143g5 -+ .0960gs + 82035

=0 1 0 0 0
(IT1): .0983¢, + .7143g + 1.0000gs + .1821g. + 7230

-0 0 1 0 0

(IV): .1100g; + .0960gz -+ .1821gs + 1.0000g, - .1124g;
=0 0 0

(V): .0470g, + .8203¢, + .7230gs + 1124y, + 1.0000g,
=0 0 0 0 1
NS *

A systematie procedure often used for the solut.ioon"’oi“ “tuch a system
of equations is shown in Table 100. A convenient ch?}.(:i{’ column is often
carried along, to the right of these computations,{\"ﬂ‘he first and second
entries of this check column are found by adding el other cniries in their
respective rows. The third entry is found ihtwo ways, thus yielding &
check on the aceuracy of the arithmetical¢bmputations. The fivst way
consists in the addition of all other epbties in the third row. The other
way consists in operating on the firgh efftry in accordance with the direc-
tions given at the left. The othefentries in the check column are found
in a similar way.? O X

The values of gs1, gss, ges, Uss, and gss can be read directly from the
last row, numbered (23}

s\ J
ga = —.0024;  ggs —2.1493;  ge = —.9678; g5 = — .0062;
O gss = 3.4638

.\10

We get g ’:()’;z, a3, G4, A0d a5 a5 follows:
Substituté/gs: in Eq. (16, Table 100) and use column ¥ in the right-
hand m\eﬁ\ber: '
N gs1 -+ .0018(—.0024) = — 0946
O ga = —.0940

&ES“WW gs2 in Eq. (16, Table 100} and use column F’ in the right
member: '
ger + 0018(—2.1493) = .0649

g2 = 0688

Substitute gss in Eq. (16, Table 100) and use column I in the right
member:

giz 4 OD18{ —.9678) = —.2275

g3 = —.2258

R

Al should be noted that errors ocourring in the rounding of the
lations are not accounted for by the check eolumnn,

original €orre
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Substitute gss in Eq. (16, Table 100) and use column F"’ in the right
member: ,
Fus + 0018(—.0062) = 1.0456
Gos = 10436
Substitute ggs in Eq. (18, Table 100) and use column F¢ in the right
member:
15 + 0018(3.4638) = 0
gis = —.0062

To obtain ga, a2, P35, F34, and gas! ON
Substitute g4 and gz in Eq. (10, Table 100) and use # in the right
member: ‘ \ \)
gsy + 2176(—.0946) - .2798(—.0024) = — 1530\
a1 = —.1377 ”;"}«:
Substitute gs and gse in Fig. (10, Table 100) and {{'s’e’F’ in the right
member;
ga: + 2176(.0688) + .2798(--2. 1493\)\‘~ ~—l 4712
ffaa = — 8847 &

\ 3
Substitute gss and gs5 in Eg. (10, TabLe 100) and use F'* in the right

member:
gsa + 2176(~-. 2258) + 2798(— AG7R) = 2.0605

gz = 23864 . O
Substitute g, and gs: in He. (10 Table 100} and use 7' in the right
member: NS
gas + . 2{2(6{1 0456) + .2798(—.0062) = 0
Fae =, 258
Substitute gjs &ﬁd gss in Eq. (10, Table 100} and use F¢¥ in the right
member: N
s+ .2176( . 0062) + .2798(3.4638) =0
\ g = —.9878

To obmm G, Go2p Jo3y fai, a0 gosl
‘Substitute gs, ga, and gs in Eq. (5, Table 100) and use ¥ in the

right member:
g1 ~F 7119{— . 1377) + .0028(—.0948) + .8196( —.0024) = —.0300

fa1 = 0788
Substitute gss, gz, and gse in Bq. (5, Table 100) and use F’in the right

member:
gaz + T119(—.8847) + 0928(.0888) -+ .8196(—2.1493) = 1.0009
go2 = 3.3859
Substitute gss, gz, and gsain Bq. (5, Table 100) and use F' in the right
member:
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oz + .T119(2.3864) + (0028( — .2258) 4 B19G(—.DG78] =0
ggg = —'8847 .
Substitute gai, gu, and gs: in Fq. (5, Table 100) and use F'' in the
right member:
gas A+ T179( — .2258) -+ .0928(1.0156) + 8196(—.0062) = O
Jeg = 0688
Substitute gus, gas, and gss in Lq. (5, Table 100} wed nse /40 in the
right member:
gas - T119{— 9678} + .0928(—.0062) + .819G(3.1638) £\
fap = 2.]{193 ’\:\.
To obtain g11, g2, F1a F1a, a0 gae: ;\’\. )
Substitute g1, gs1, gar, and gs1 in Eg. (1, Table I()I)‘) and use F in the
right member: ")

g + 0300(.0788) 4 0083(—.1377) + 1100(:% - 0470(—.0024)
=]
du = 1. 0217 ’:1\\“
Substitute gus, Faz, Fa2, and gs= In Lq {l Tuble 100) and use ' in the
right member: W W
712 + .0300(3.3859) + 0983{—.884: ) 4 110000688} + .0470(—2.1493)
=0
gz = 0788 h

..,

Substitute gz, ¢aaefas ;md ¢a3n g, (1, Table 1047 and use F'" in the

| o
right member; \

010 + 0300, 384‘?) 1 .0083(2.3864) 1 .1100(—.2258) + 0470(— 967 ()}

g1z = —= 13:‘7

Subskltutc 21, oty g4, a0d gos in L. (1, Table 100) and use ' in the
rlgl:(t \member:

Cgdh - 0300(.0688) 4 .0883(—2258) + .1100(1.0456) + 0470(— 0062)0

g1a = —.0946

Substitute gas, gas, g1s, and gs in LEa. (1, Table 100) and use & in the
right member:

g1s + .0300( —2.1493) 4 .0983(—.0678) + .1100(—.0062}
1 .0470(3.4638) =
gis = —.0024

The accuracy of the (g;)’s (i >¢ j) can be checked by the equation
gs = gn; and the accuracy of the {g:;)’s can be checked by 8 methe
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illustrated by Wallace and Snedecor (Ref. 25).% It is shown that to
obtain g1, the sum of products of the last two members (regardless of
sign) in each section in column () is found; similurly, for g the same
procedure is followed in eolumn (), and so on.  In our problem

gu = 1 4 .0300(.0300) + .0769(.1589) + .0905(.0946) 4 .0007(.0024)

= 1.0217
g2z = 1.0000{1.0009) 4 .7119¢1.4712} + 0621(.0649) 4 .G205(2.1493)
= 3.3859%
gss = 1.0000(2.0665) -+ .2176(.2275) + .2704(.0678) = 2.3804
g4s = 1.0000(1.0456) + .D018(.0062) = 1.0456
g5 = 1.0000(3.4638) = 3.4638 '.\:\
Since we have checked all our results, we shall summ‘m;i:%e them as
follows: _ N
g = 1.0217; g1z = 788, g1z = —.1377; '\{’gu = —.09:46;
’m} fiz = “‘0021
gn = 0788; gez = 3.3859; Jas = —‘%ﬂ?; gz = 0688,
7\ g2s = 2.1493
ga = —.1377; g3z = —.8847; 733 ?’&-3864‘-; gz = —.2258;
) fas = — 9678
gu = —.0046; g = .0688; s = —.2258;  gu = 1.0456;
N gss = —.006G2
gs1 = —.0024; gee = 2.14985%  gs = —.9678; g = —.0082;
- g = 3.4638

Step 3. Compute .&,"_'1}345, the multiple correlation between ¥ and
X1, Xa, X, Xop Ko N
Define:

‘\§;= ngf?’m (53 =1-""- ; ) (14.18)
’\5

where §; i%hé standard partial regression coefficient.  For our problem,
we have,

'"\: \ ’ 81 = iy T Grer + gr1arsy + G147 + gurey = -‘1514
N/ 8y = guiry + garrey + gasrm + Jailay 4 fostsy = D256
83 = gairiy + gary T FasTa T Jalay + gy = —.0390

Be = gurw T Geray + asrs + JaTay + gusrs, = 0109

Bs = g1y + grotoy + sy T Goilay + GusToy = 4232

Define again:
Rsss = ), 6r (1= 1,0, 5) (14.19)

ovide a complete guarantee of accuracy, sincelin si.‘ome
instances Jatge orrors in the solution might give only small devmtégr;;: oof ’tl}; tgfi t “-rl?:,ﬁ
the right member of the cquation, and since somie deviations are o exp

only a imited number of decimal places are carried along.
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For our problem, we have
= By + Berey 1 Boray + Bray + Birw = HO3406861

2
R:.r.l'2345

Therefore, we obtain
h)-y.l?.'i-ia = 7096

Step 4. Test the significance of /2y 10a:. This can be done through
the use of the variance ralio. The method is shown below.

Ananvsis-or-Vanravor TapLy

o <N
Source of varialion Butn of squares 1D ~! MNean square
A, N
% { 4 (1 — RH)Zy
Not associated with regression (1 —E3y=e N a1 --\—_—m _'1
'n \ i
. . . ‘& . Rzt
Assoeialed with regression syt 'x\\ i I _;rr_ty
; | m
. - . SR S
Total HJ; \, | N o=
\
NN — m — 1
F {variance 1at10J iy S ) (14.20)
Y mil — I
For our problem, .}”*
N DO35(207
OBS(207) _ 4 g

| B{.A0G5]
Q T 5(.4065)

Referring to the F t&blea\(Tablv IV, Appendix) with n, = 5and ne = 207,
we have P < .01, \{\helefmc, we conclude that the value of the multipls
correlation is sighificantly different from zero.

Step 5. st the significance of (8))'s.
Definey \“'
\’\,’ (L= R it
) o W T Ml oy L 14.21)
R ~. 5 N —m~—1 (=1 ) (

\vhﬁre s 18 the standard error of 8,.  For our problem we have:

o = JO T e
' N —m — 1 v
&g, = /7"{&191«]0’” — 0901

’ N —m—1 :
(U= "R2 h0y)033 o
85, = o ttwlmadn A :
B \] J — 0757
(1 — 12 Ll
8s, = [ — It oglgss _ .
# ‘\f N w1 0501
— R paia)gss
8, = TAREE N = 0 11
g '\j N—=—m—1 09
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The test of significance of each 3 is given by

Bi
8,
with N — m — 1 degrees of freedom. For our problem, we obtain

ts, = 3.059; &, = 3.614;  f5, = —.515
fo, = 218;  f5 = 4.645

Referring to the {-table with 207 degrees of freedom, we find that 8, 8.,
and @; arc significant at the 1 per cent level, and that 8; and 4 arenot
significantly different from zero. Therefore, we can omit the independ-
eni variables X; and X,.1 L\
Step 6. The cmission of X;: Let us denote by 8] andeg» the new
standard regression coefficient and auxiliary statistics, rq@eﬁﬁively. By
mathematical derivations, we have A 3

lp; = (14.22)

_ R
Bl =B — ;’:ﬁs (i =1,2 43D (14.23)
YRR, \ ¢
oy =ou— 22 G- 1B (14.24)
Tor our problem, we can easily obt-ain' QO of
g 98 qage Sy g, TP = 3112
Bl =b— b .1492,;{‘,.; Bo= B~ s
8l = B — P25, = 0072, 8! = By — Ly = 4074
a3 \ gz
: 7 - 19138: o= gue — P 0278
Hiz = gu — _(,E ”"\%91'3& Tz = 1z 73 =
- - g1ag
gils = Gus __Q%‘_Z;Z%S = —.1076; gis = f15 = % = —.0582
Nz
Goo =\gm€’> gﬁ = 3.0579; Ghy = gu — gi{;ffs = —.0149
N : 0 _ 1 nos
Th\™ 25 — 9;& = —2508L;  ghe = gu— o2 = 1.0242
N\ 2
o \Y/ ; -G, = _ — 0T
\"‘: T = gis — 9% ~ —0978; g = ges— o = 30718

Troceeding as before, we have
RE1pes = Biry + Birs + Birw + Birs, = 5028880
Ryi045 = 7091
P Rzg;(l—:n% = 52.6067
where m' = 4. Referring to the F-table with n; = 4 and n, = 208, we
find that P < .01. Therefore, we conclude that the R is significant.

* Tor u discussion of “suppression’’ variables which might inerease the multiple

correlation even if they correlate zero or near 2ero with the eriterion, see Refs, 14 and
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In testing the significance of (3{)’s, we obtuin

/(_l _ }115_1‘__1_1:_.\-?;;1 - (192

g, = .\|| N —

-
S5 = o 0855

(= Ry -
;o= o b= DG
5y \/ N—wm =1

L — e
(1 — ‘Eﬂ__._lm:\:'!’;’:,:_,

ser = Al - 0857
S8s N —m = 2\
Censequently, wo oblain A
¢\
3] . i o\ Y
fp, = S = 3.033; fy, = — — 36100
Sﬂ', At "‘}S
8; IO\ e
t'a = - = 1!5- ZJ'- = =L 7:",1"‘7(']':
) S, t 4% "".'i",.-."’,\\

Referring to the i-table with 208 degrees of i'g(‘.("t'lmn, we find that 31, By
and B/ ave significant at the 1 per cent leveDard that 3= not significantly
different from 0. ‘Therefore, it is desitable to omit the independent
variable X4

Step 7. The omission of bgtl{?l X, and X, Let us denote by _ﬁé’
and ¢} the new standard reg;:@’eéiiﬁn coofficients and auxiliary statistics,
respectively. By mat-hcmu.ﬁffuf derivations, we have

V= g~ g =1,2,5) (0428

\\‘ E T
o =y =P (5= 1,20 042
W, _ h
For our prg@gm, we can easily obtain
x"‘\:' r !
\J I ’ T14 4 I ’ o ot
\“' = —73; & :".,——IB
’{\ & d Gas - B, 7 !
:'\‘;;f = 1500 ’ = .3113
N " ot 9:34 !
) =g — g
< S
= 1081
2 b ifa,
g = g — 2 — 1.0025; gl = g, — 2 = 0262
faa Fis
o5 g_;@ —- = o0 E}:ﬁ = 305?7
s s 7o 0685, fan = o 7y
b Lt
ghe = gis — B = —2.5005; gl = gl — 7 = 3060
44 14

® The advantage of the use of the gstatistics over the meihod of
normal cquations depends upon the number of independent variatos.
of originally independent variales is 6 or more, or perhaps 3, and if 2 ar
nated, the uee of the g-statislics is advisable.

rosolving E}g

If the num
o to be el
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Proceeding as before, we have

R} 155 = Biry + By + B rsy = 50285089

Rya2: = 7001
T RE(;\" - m J
F = L ) = 70.480

where m” = 3. Referring to F-table with n; = 3 and n. = 209, we have
£ < 01, Therefore, we conclude that the R is significantly different
from zero.

In tegling the sigpificance of the standard partial regression (-('J—r}[i-

clents, we have L\
0= B O
e, = —_— 0—1 . W
5y N—m" -1 88 AN
_ [ —Elades _ 7\
S = AN o — 1 -085%..,>"
_ o ja = R_?.r 1.259'0.. _ N}
BT AN —m” — 1 T:'ﬁ@?s
Consequently, we have \ \
Ly, = LA 3.074; tger, = ﬁ—z 3N 3. 619 g, = B _ 4784
‘-,3 . ‘-ﬁ” R Sgry

Referring to the t-table with 2085 dchee:, of freedom, we find that all the
standard partial regression &oefficients ave significant.  Therefore, we
conclude that the three lD{d‘(-hBEIldenL variables X1, X, and X should be
usad in ovder to predictthe dependent variable Y.

Step 8. Set up e formula for the prediction of ¥ from Xy, XNy, and
X5 Tirst we calc@late the partial regression coefficients,  Deline:

:"\:&\w b = ﬁ,-s—’j‘ (t=1,+-+,5) (1427
QA :
Snmla.r},}g. b =6 (F=12405  (11.28)
”\~ 1o re Sy - !
vV b =6 (=125 (1429

- T . 1] . r Y "
For our problem, we do not need to use b; and bi. Therefore, we have

8 Sy
by = gy e 0 B = B = 0106 U= AT = O

where s, = .837802, s, = 2.311376, 5; = 15.695178, and s, = 24.231172
which arc (,'Llculatnd from the results in Step 1. Denocting by ¥ the pre-

dicted Y-score, we have
7= ?+Zb,::v.— (G=1,2--,5 (1430
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Similarly,
=7+ E bars (i=1,2475 (1430

P=7+ Eb;’x; G=1,205 (1432

Again, for our problem we simply use {14.32). Then we obtlain

P = 740X — X)) 40X — Koy (G~ X)
23362 — .0544(15.9206) — .0LG6(161.9061) ~
0141(90.0235) + .0544X, + 0166\ + 01N,
0544 X, 4+ 0166X. + 0B N — 201873 '\..\

'\

It is to be noted that this predicted score refers.dy The true mean
Y-score of all the individuals who have the same spe mTLc deores of Xy, X
and X;in the population.  In other words, in the, km'r run, the true mean
Y-score of all the individuals who have identicdhld6res for X, X, and X5
in the population will approach ¥ within g Qd,u(,ul limit which we may
set up. Since in our example we do notdfind two individuals with the
same scores for Xy, X, and X5, 1t is dllh( wlt to verify the accuracy of the
predicted score. ;

Btep 8. Compute the stfmdcwi error of an individual predicted score.
The general formula using tho au\lhmn statislies (g;,)’s for predicting
the standard error of an mdn idual predicted score is

If

5i8 J

\jz(l :5 3%?:.1:31 ! [ VJ”:IE—E—Q V f,’u_,l B] (14.33)
s’<J'

where 7, § = 1}\~ + + ,m; m is the number of mdependentxanmblo:: 53, the
estimate of HiC populatlon variance oZ; and the s/s and /s and the 8
are defmé%‘as before 5 For our problem, we simply use £, 7 = 1, 2,9 and
change m tom’” = 3 and (§)'s to (g")’s. Thug we have

_____ o _____.___._—-—-—'—'
\ 5.2(1 ) qn gn ;
82 125 HARY .2 ‘iz o 12 £1T2
CTAN S -1[1+sf11+s§$2+5 s

h

2(,1 2995 ]
15 Tals
+ J18g o + §23 -

= +/.001670[1 + .I18T6x} + 0124« + 005222 + e
— 0024z — 0132x52]

5 The working fermula can also be written as follows:

5 = AL = B [\ PN “Z __ﬂm,:g,]
Pl

N-—m-—1 ,_(_,a:,,

1{3
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Step 10, Find the fiducial limits.
Fiducial limits (p) = ¥ £ #,,(s5)

where p 4+ ¢ = 1 and the {-value is obtained by referring to the t-table
with & — m — 1 (for our problem, N — m" — 1) degrees of freedom.
It may be stated with a confidence coefficient of 100p per cent that the
true mean Y-score of all the individuals who have identical X1, X, and
X ;~scores will lie in the range of ¥ + #,(s;). It is customary to make
p = .99 or .95. For our problem, & —m" — 1 = 200, Referring\to
the i-table with 209 degrees of freedom, we find that £, = 2.60\and
tos = 1.972. Therefore, we have O\

Fidueial limits (99) = ¥ + 2.600(s;) O
TFiduecial limits (,95) = P+ 1.972(s;) N

Step 11. Practical application: To find the ﬁch)e?al limits for the
true mean Y-score for the following individual vilhes:
A\
X, =16; X, =163; X;-£8 Y =2316
P = —2.4873 + .0544(16) + .0166(363) + 0141(80) = 2,217
xy = 0704, ze = 109390NS 15 = —10.0235

sy = \/.0016'70 T 1 .1876(.0704)5 .0124(1.0939)°

+ .0052(— 10,0285)2 4 .0014(.0704)(1.0039) — 0024
(.0704)( —10:0235) — 0132(1.0939)( —10.0235)
— 0530 RN
TFiducial limits (@)= 2.217 + 2.600(.0530) = (2.079, 2.355)
Fiducial limits)(95) = 2.217 + 1.972(.0530) = (2.112, 2.322)

The Discrinﬁ:ihﬁt Function, The ordering of things into classes is a
basic procedufe of empirical science. In fact, the rigorousness of the
basis of séidniific clagsification is an index of the development of a field
as a sciefice, Statistical methods are available which can be profitably
&1)pliegf o the problem of discriminating between different populations
aMblassifving them. The aspect of the problem to be discussed here
dedlé with the statistical uses of multi-measurement for differentiating
between two or more groups of individuals, things, or events. This is
frequently a problem in cconomics, education, psychology, or in the
various fields of science. For instance, individuals upon whom scveral
measurements are available are to be classified into groups with a mini-
mum of overlapping. The traditional method is to computo the sig-
nificance of the difference between the means of groups taking each
character separately. This method is inefficient in that it does not make
possible the evaluation of the relative amount of information for differ-
entiation provided by the several measurements; ncither does it combine
the information taking into account the interrelations, if they exist,
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between the charaeters dealt with.  Trom this observation, the problem
is clearly one analogous to mulliple regression; that 1=, o welghted sum
of the measurcments 13 needed s in mulliple regression. The dillerence
Lies in the nature of the eriterion which s, in the problem diseussed here,
qualitative rather than quantitative as in the case of multipie regression.
That is, the dependent variable is a dichotomy or a multiple clussifica-
tion. The particular statisiiec for the solution of this problem, which is
called the diseriminant function, was developed by Iisher (Ref. 109,
The essential property of this function, which ix o linear function of the
observations, is that it will distinguish bhetter than any otler linear
funetion between the gpecificd groups on whom common pkgsirements
are avallable. The principle upon which the (lis:-rimin:m( {thic1ion rests
is that the linear functions of the measurements will maximize the ratio
of the difference between the specifie meuns to thesindird devintions
within classes. This type of problem is ulso @éecly related to that
studied by Hotelling (Refs. 15 and 16) resulhngein his generalization of
“Student’s” ratio, or Hotelling’s 7', as it dghisually called, which is a
powerful tool for testing the signiﬁ(’zmt‘.(:‘}@twovn moean values of different
multivariate normal populations undenthe assumptions of equal variances
and equal covariances.  Closely relgted also is the statistic developed by
Mahalanobis (Ref. 19) and stugli’(é.’d“furLher by Bose and Roy (Ref, 3),
Jeading to the studentized forpdef the distribution, in stutisties called the
gencralized distance function, B2, By tho use of D% different multivariate
populations can be not. ; fertly discriminated but also elossificd, that 18,
D? eontributes both telghe problem of testing significance and of estima-
tion. The trcatmglﬁ\ here is limited to the diseriminant function.

We first presgnt the formulation and selation of the mathematical
problem. They*a practical application is prescnted.

Two Grg@sé. If we have samples of ¥y and &, observations, respec-
tively, gntmake p measurements X, . . . , X, on each individual, con-
sider_fivst the question: What linear function of the measurcments will
lng;){in{ize the ratio of the difference befween the means of the two classes
16 the standard deviation within classes? The lincar function is repré
dented by

o=Sha G=1,---,p (1434
b

Let the difference between means of z; be represented by & where
i=1,+,pfor the p measurements. Represent the sum of squarcs
or procduects from the specific means within classes by Sy, where LJ= 1,
+ -+, p. Then for any linear function, a, of the measurements, the
difference between the means of « in the two specific groups 18

D=Ynd =1, P (14.35)
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while the variance of & within classes is proportional to
8, = 227\9\,&-,— Gi=1+--,p) (1436
i g

The particular function which best discriminates the two groups will
he one for which the ratio D%/S; is greatest, by variation of the p coethi-

cients, Ay, . . ., Ap independently. Mathematically, we should seck
the solulion for each X:
& {D* -
—— ——— p—n - }
= (S) 0 {1437}
which reduces to (D))
NS ¥
b ap as @
@(QSK_DG)\)FO “:~ (14.38)
and consequently, ) '\'\'."
a8 8 4D N\, ‘
RS S i 14.39
Eax D e O (14.39)

#? #
where it may be noticed that §/D is a fa(-.,t’m,\(:ommon to the p unknown
Ns.  Therefore, the cocflicients required(aye propottional to the solutions

of the normal equations: A\
S “';';".":1— Slpkp =
R N L s e (14‘1_“)
Spl)\k‘%\ s Sw)\p d,
Let us define: \\’
O\ Li=~8an E=1, " ) (14.41)
“J . _ _
In (14.40) we-divide the sth equation by v/ Si where ¢ =1, - - -, p.
Then we Qﬁ’e‘the following set of normal equations:
"
A\ d
:»\;~: 9 rada + 0 7 -+ '-"I._raLp = :/_;S_n
\’”\}“ .................. (14.42)
dy

We can easily solve (14.42) for L's by Fisher’s method of auxiliary atatis-
ties, in which unity is gubstituted for each of the di/ 4/ S n turn, while

the others are made equal to zero as follows:

L "'+?"?)L’=l"',0
Tlf .1._1- ...... :l.p. - .’. ..... (1_143)
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Let us define the means of & for these two groups:

=YaKy G=1,--,p) (1449
4
& = Em (G=1,---,p) (1445

when Xy is the mean value of X, for the first group and X, is the mean
value of X; for the second group. We wish Lo test ihe hypothesis:

E 1is the notation for the copectalion
of a parameter

Ho:E{an) = E(on) ( ) N 14.46)
that is, the hypothesis that there is no significant (lii“i:f:{'(\ht:}z! between
two groups for the function «. By mathemutical dedycwons, the sums
of squares due to “within groups” and “belwecen 'rrtﬁi]')&:” are

“Within groups” D with ns = N, + Ao < "p\— 1 {14.47)
13 . 1" li\ 2 9 :
Between A NzD with nl\ P {14.48)
Then the test of H, 18 given by x\
N+ Ny =1 AN,
F = N v D
N Ni+ AN

If we reject the hypothesis, Fryp¥e may conclude that the obtained values
of M's are the assigned w eig;h‘rq of the measurements which best diserim-
inate these two groups("yThen the next problem wrises such that if we
have another 1nd1v13q\l to be observed by making the saime measure-
ments, Xy, . .. £ X, on him, we wish to know to which group he
helongs. Wald \(R,Lf 26) has shown two methods for solving this
problem: (1y®hen N; and N, are sufficiently lar ae, and (2) when N¢and
Njare s aH For the time being, we assume that &; and &; are guff-
ciently {ﬁge By using Wald's criterion, let us denote by sy and = the
popula,tmns, of the first group and the ~,eumd group, respectively. The

’Ehesls tested in this problem is that the individual is drawn from 7.
%u‘st we calculate:

& = E z BiXud; = MXu + -+ - + 0%,
i j
&2 = Z ESU}ZZECEJ = h'l)-‘-—Zl. + ot + RJ.,XZH
T 3
Gi=1--,p (40
-y E SiXdy = MX1 4 - - 40X,
T 7

(5,5=1,- " , P (14.51)
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where @, &, Xiy Xa, Sy and d; are defined as before, X, is the value
obtained by this individuul on the 7th measurement; and U s the value
obtained by the mdividual for the linear function «. Then the critical
region for rejecting the hypothesis with the least risk of both kinds of
error, that is, accepting the hypothesis when it is falsc and rejecting the
hypothesis when it is true, is given by

ye T ® (14.52)

Problem XIV.2. Discrimination between two groups. There were $ivo
classes in the College of Science, Literature and Arts in the University
of Minnesota. One class was taking the eourse Physics 7, }ﬁl\iibh\was
more advanced than Physics 1 taken by the other class. 'Threéwneasure-
ments were available for each individual: mathematidaMgest score,
American Council Examination (A.C.E.) test score, and'\hdnor-point ratio
(H.P.R.). Let us denote the mathematical test scoré by X, the A.C.E.
test score by X, and the HP.R. by X;. The Qxlcula.ted meusures are
summarized in Table 101. \\ ’

TABLE 10I0N\/
CALCTLATED MEASURES F,pit..TWO Groups

P.}Iyéic's 1 Physies 7

™
ol S

N \ 111 257
zx, .Y 9,728 23,746
X“;\\ N 87.6306 92 3069
K. 3,450 14,411
AN 4 31.0811 56.0739
ANEY, 128 .6 3261
AN X 1.1586 1.2689
& X 805,694 2,388,412
AN\ X2 118,846 823,945
O TX 200.84 534.17
N X, X5 307,220 1,349,410
O 2X. X, 11,756.0 31,074.6
\‘; " XX 4240.8 101223
d 4.7573
ds 24,4923
d 0.1103

Tn Table 102 are recorded the computations leading to the pooled sum
of squares and products within the two groups. In the line of totals, the
entries are the sum of squares and products of the entire 368 individuals.

In the line for groups are put down the sums of squares and prod}lch
of the group sums in Table 101, ealeulated in the manner characteristic
of analysis of variance and covariance. As an example, the entry for
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eolumn X1 in row X, of Table 102 ig

(0728)" |, (23746)"

T+ T = 3,046,614.8060

and for column X row X,

(9728)(3450)  (23,746)(14,411)

111 957 = 1,633,888.2077

The differences in the third line are the sums of squares and products of
deviations within the group. The ealculation of the standard deviations
and the correlations now proceed in the usual manner.

As examples, ‘O
NS ©
o = YATAILI08E _ 96003010 ~\°
+/ 366 o\

L&

29,741,7023 . ¢
12 = (17 4847)(165.7705) 275763

AN
The degrecs of freedom used, 360, are th%’eﬁvlthm the two groups,
(N, — D) + (N: — 1),
Caleulate: W
d . i \ikom s _ gos:
. = (09563; =2 SN507067; —— = (08404
\/EL 0% S.efz:. /83

Consequently, we obtain ths'follawing set of normal equations:

1.000000/:3 Jk 9757631, + 356796Ls = 009563
2757635+ 1.000000L + 40658015 = 150767
356796L1 -+ 496589L, + 1.000000Ls = .008404

The solutions\é}}Ll, L,, and Lj are carried out in Table .103.

In Table\l03 a convenient ¢heck column is often carried along, to the
right of these computations. "The first and second entries of t!ﬁs check
colunppiare found by adding all other entries In t-h.eir respective rows.
T wé‘;ﬂl’ird entry is found in two Ways, thus yielding a check on the
accliracy of the arithmetical computations. The first way consists of
addition of all entries in the third row; the other way cgnmst-s of' ope‘rat—
ing on the first entry in the check column in accordance with the directions
given at the left. The other entries in the check column are found in a
similar way.

The values of ka1, Ks2
(10) in Table 103:

fizn = —'339-103, ksg = —614720; kss = 1.426361

i

and ki3 can be read directly? from the last row,

T The k-values are uscd jn the caleulations of the L's as noted on page 351.
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In order to obtain bz, ko, and keg:

Substitute k3 in Fa. (B), Table 103, using ecolumn (D} in the right
member:

koy 4 .430971(— 339403) = —.298459

ke = —.152186

Substitute kg in Eq. {3}, Table 103, using (D) in the right member:

koo 4+ 430071(—.614720) = 1.082304
kap = 1.347230

: ~
Substitute ks3 in Eq. (5), Table 103, using (D"} in the right membex:
kas + 430971(1.426361) = 0 A

has = — 614720 O

To obtain }{311, klg, &]].d klg: ..
Substitute kg and ks in Eq. (1), Table 103, using (.Dz‘s\
ki + .275763(—.152186) + .356796(<.389403) =1
ku = 1163065 ,\’\ g
Substitute kes and ks, in Bq. (1), Table 108 using (D'):
ke -+ .275763(1.347230) +,,‘3:56?'96(—.614720) =0
}i'-m = —.152186 .v:’:: .
Substitute ks and ks in Eg. (1)) Table 103, using (D)
ks + .2757(-53(—\6”14720) 4+ .256796(1.426361) = 0
brg = —.3394&33
It is noted that o
."."' k€j=k3‘i (i;‘é]: 1= 1} 27 3)
\ ¥ ) - )
This is a good'{héck on the calculation of ki (2 # 5. The check of ki
(i =12 /en¥ be carried out easily. To obtain k11, the sum of products
of the ]ast%;b numbers (regardless of sign} in each section in e?lumn (D}
is foup(‘l;’l For ke do the same in column (D), and so on. We have
'-T’\j "\:—- 1.000000 - .275763(.298459) + .237950(.339402}) = 1.163065
E-m = 1.000000(1.082304) + 430071(.614720) = 1.347230
By 1.000000(1.426361) = 1.426361

The values of Ly, Lz, and Ls are obtained by caleulating the following

Il

equations: p i
_ d LT W T Ty 3P
L‘L = .\/:Srllkll + ‘\/qu 12 '\/SEG
v ds __dL k
= % —2 fpp A —5= K
L2 \/—g; 21 + ‘\/3;2 22 ‘\/Sas

_ 4 ———-—ds k +-—d-3—'k33
Ls_\/:g;km—!-‘\/g;z a2 S an
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Consequently, the values of Ay, Ao, and s arc obtained by calculating the
following equations:
A = L—-l—; Ae = 'I;z—; Ay = —Li—-
VvV 8u V' Ses Vs
All these values are shown in Table 103,
The next step is to ealeulate the value of D, As a check we can use

two equations;

. . dl (jx
D :IJ E—Lg +I13 —'._._
' \/*‘311 b°2 A S 2\
D = )\ldl -+ kzd-z + \.tfjs A o
In our casc: D = 0283779 ()

. - - N : .\ 1
This value is also the “within sum of squares.  The¢bétween® sum of
T |

SUAres 18 R

17\1'714]\“"2 . ¢$/
e 2 = .0(14.186.\
N 4 N, 4
The test of significance between two g,mu}&\o‘n the variable @ 18 given in
Table 104. W
TARLBGO!
ANALYSIS OF VARIANCE OF o BRLWEEN AND Wiy (1ROUTS
Source of variation T),l-‘,.::‘; 'S.S, MLE. B TIypothesis
Within groups ) ~: 64| 028779 | 0000TOOG . ... ...
Between groups L 3 | 064186 | 021305 | 270.617 | Tiejected
Total \\ 367 1 002065 N

Referring ‘(O\the F-table w 1th ny = 3% and ns = 364, we find p < .0L
Therefore, e “eject the hypothesis of homogencous groups; and the
relative a}ue of the variable « for diseriminaling between groups is
dpparcn'ﬁ indicated by the weights of the different measurements:

\ )\1 = —.00002950; Ay = 00118535; Az = —.00639576

d
\ } Bow suppose an individual is given thesec same measurements and
obtlains

X, = 80; X2 = 40; X:=15
We wish fo know to which group this individual should be assigned.
First, we calculate

& = —.00002950(87.6396) + .00118535(31.0811) — .00636576(1.1586)
— 026846
8y = —.00002050(92.3969) + .00118535(56.0739) — .00639576(L. 2689)26
~ .0556
U = —.00002950(80) - .00118535(40) — .00639576(1.5) = .035460
BEE 4193

2
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& + &

Tt is evident that U< 5

"Therefore, we may conclude that this individual should be assigned to the
¢lass Physies 1.

PROBLEMS

1. What methods of multivariate analysis other than those reported in
this chapter arc available? Which of these are applicable to problems
in the field of your interest? [In this conneetion, see Tintner, Ger-
hard, “Some Applications of Multivariate Analyses to Liconomic
Data,” Journal of the American Statistical Association, Vol. 4TNPP.
472-500 {December, 10846.)] O

2. Specify the problem of factor analysis in psychology as a spedial appli-
cation of the theory of regression. [S¢e Molzinger, K. Jesirid Harmon,
11. H., Factor Analysts (University of Chicago Pressy 1@41) ; Thompson,
G. IL., The Factorial Analysis of Human Abéiity?}ﬂoughton Mifflin
Company, 2d. ed., 1946); Thurstone, L. 1., Mbltrple-Factor Anafysis:
A Development and Expansion of the V ec;@jv’s}af Mind (University of
Chicago Press, 1947.)] O

3, The following data for & random samplé of 50 students were taken from
a gtudy dealing with the predic-tio’x)lof achicvement of freshmen in a
particular college of the Uni\:eyéi{?y of Minnesota:

¥, = honor-point rafie at the end of the fall quarter

Y, = honor-poinf ilo at the end of the freshman year

X, = score gn*johnson Qeience Application Test

georg Oh an English fest

X; = scbre on the Cooperative Algebra Test

X, =¢percentile rank in high-school graduation class transformed
N\

{to probits
N

5
1

2 &

In.fhig problem you are to do the following:

<‘(;af) Sel, up the multiple Tegression equation for predicting either ¥
or Yz from Xl, Xz, X.’;, ELTld X;.
(b} Test the significance of the . _
(1) Standard partial regression coefficients (the hetas).
(2) Multiple correlation cuefﬁcient‘.
(3) Differcnces between the respective b.etas. o ‘
{c) Set up a new multiple regression equation eh'ml.natmg.thc.z.111de-
pendent variable or variables that arc not statistically significant.

{d) Repeat (b). ‘ ",
(¢) Calculate the gtandard error of the predicted score anc set up
the confidence interval, with a confidence coefficient of 98 per cent

for Students 8, 25, 43, and 47.
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Y, Y, X, | X, x, | .
Student| Honor- Henor- | Johnson | Coop. j a4 elju { TTigh-school PR, con-
No. |point ratio ; point ratio | Science English | ° g&j & verted into 3.1 units
| @ | @) @ (6)
1 1.85 1.57 56 80 46 4.72
2 1.29 1.38 34 113 48 5.64
3 .88 1.15 32 04 75 4.92
4 1.29 11 55 47 32 648
5 .94 .54 37 126 50 5.08
6 .80 .83 32 81 7 4.53
7 .46 .50 23 115 34 505
& 1.00 .85 62 148 58 .63
9 72 .06 28 84 36 480N
10 .31 76 41 119 16 1.33
AW
11 13 64 20 69 7 PR
12 .20 .39 47 i 24 W77
13 Ad .70 33 108 16 , 4 48
14 1.00 1.49 44 80 31 L8 4.69
15 .21 .60 41 84 28 O 5.05
w7
16 1.27 1.67 28 79 Y 4 .67
17 1.06 1.65 47 109 ¢t 5.10
18 .71 B4 50 92 023 1,23
19 - .07 — .24 31 93 { & 20 3.44
20 1.65 1.43 43 NS 32 5.81
21 1.59 .50 59 . 87 58 4.87
22 —~ 12 .43 38 A2N795 14 4.01
23 .27 35 20 0y T 72 38 3.77
24 12 A1 27 106 18 5.10
25 .00 A1 38 71 22 5.00
26 1.12 1.124\ 10 122 12 5.39
27 .29 AN 4 84 26 4.77
28 1.00 \,\(LQ“ 45 123 a2 4.29
20 1.31 W 08 55 111 24 5.95
30 1.56 L A)1.14 52 86 15 4.87
31 1.7y 1.08 46 76 17 571
32 A8 .33 48 111 23 4.95
33 {63 1.06 30 105 61 5.81
3¢ | ANV12 60 25 08 45 4.50
36 \\°" .20 .60 42 72 0 5.67
6 75 .58 39 115 10 5.99
Z"' .09 17 37 116 40 4.75
N\ 73 .85 28 49 21 5.81
39 .09 17 37 116 40 4.70
40 1.41 .84 62 89 50 4.69
41 24 .11 24 58 13 5.00
42 .24 .48 32 117 17 4.77
43 2.00 1.56 47 72 15 5.25
44 .07 .18 45 115 24 4.64
45 1.00 1.30 52 86 44 5.15
46 1.57 1.67 65 147 8t 6.08
47 — .62 - .77 31 08 36 2.67
43 7 .21 54 129 64 4.12
49 1.47 1.33 51 131 5 5.8t
50 .56 0.00 30 75 21 s —
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4. The following statistics were derived from data collected in a study
denling with the relation between instruction in a course in college
biology and the students’ belief in the efficacy of certain commercial
preparations and home remedies. The criterion was the score on the
test, ¥. The independent variates, Xy, X: X; Xi and X5 are
specified below. In this problem:

(a) Set up the multiple regression equation for estimating ¥ from X,
Xg, Xg, X4, and Xs.

(b) Test the significance of the
(1) Standard partial regression coefficients. A
(2) Moultiple correlation eoeflicient. .

{e) Of the variance of the dependent variate ¥ accounted for by the
combined effect of the independent variates, calculatqi‘the’pro-
portion assignable to aach of the independent \{,ar'i@tes. {See
Johnson, Palmer O., “The Differential Function of ;Elxaminat-ions,”
Journal of Educational Research, Vol 30 (1936);?131}. 03-103.)

(d) Test the significance of the difference betwaen the two largest
partial regression coefficients. Ky N4

(e) Find the 5 per cent fiducial limits fag argest partial regression
coefficient. O

(f) Calculate the partial correlation, eocflicient, ryxi.x, and test its

significance. N

Zero order correlations: W = 223

fip = 452

riyg = 303 Taz
ra = 324 T21f
rip = 147 e

,i'"z\

68

274 rqe = .171

.326 ras = .190 ris = .189

542 Tay = 197 Tiy — 134

(R0 |

Ty = 514 gy = 621 T =
o= 68560 X =2252 Where ¥ — seore on application in
z‘\ hygiene

83 .%:23.78 X, = 80.54 X, = score on test of facts and

Q ) principles in hygiene

§: = 4.20 X, = 234 X, = score on vocabulary test
in hygiene

sa= 0956 XK= 495 X, = seore on final examina-
tion in hygiene

ss = 1.00 ¥, = 5.60 X, = transformed high-sehool
percentile ranks

s, = 4.89 ¥ = 32.08 X:= transformed College Apti-

tude Test percentileranks

6. The following data were collected on fwo groups of studenta_s in an
experimental investigation of the relative efficacy of two different
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methods in teaching agricultural chemisiry at the high-zehool level
Compare the two groups with respeet 10 the set: of multiple measure-
ments made at the beginning of the cxperiment.

Topical Assignment Group Tiseussion Croup
I

I’upil X X Xa ! X4 Pupil R N Xy X,
1 L | 1.87 | 38 27 1 031150 | 26 15
2 81| L62 ) 18 3 2 115 ) 1.7 28 12
3 111 5 2.40 | 26 10 3 W01 | 1,86 282\ T
4 110|198 | 20 7 1 So | 0.25 | 20 3
5 95 | 0.88 ) 15 8 5 810 053 LW 5
6 85 | .56 | 14 10 6 §7 0% 23 8
7 g7 | 1.38 1 23 0 7 43 a0 31 6
8 90 ] 0.25 | 13 3 & 1129\ .21 | 2k 4
9 %5 | 0.51 | 21 11 Q9 sz 00| 4 16
10 83 | 0.78 1 21 3 10 oNUBG | 0750 20 10
11 83 | 1.15 | 22 7 MN ooo bzt 24 13
12 100 | 2.24 | 31 15 2 0, 0451 22 0 7
13 106 | 0.72 ] 22 3 ‘S K 12 | 106 40 | 16
14 92 | 1.36 | 20 ] CNY 14 ar oLy 17 3
15 04 | 1.25 | 16 11 AT 1s 77042 14 i
16 96 | 062 | 12 9 o0 16 g6 | 1681 20 1l
17 ]3| 0.80 16 3ol 17 85 ' 0,90 15 2
1% 113 | 2.65 | 28 & 18 I 1150165 | 22 7
19 104 | 161 ) 21 [ {N 1% nr | 1.7 o8 11
20 93 | 1.51 | 20,4 Y10 |

LAY

N\

= Intelligdder quotient based on Kuhlman-Anderson Tesls.

Xe = Hongsi—{ioint ratio of previous year's work.

X; = %}:ﬁe’ on pretest of knowledge of facts and principles examina-
¢tion administered at the beginning of the term.

X s %= Heore on pretest of Glenn-Welton Chemistry Achievement Test

() administered at the beginning of the ycar.

/N
%
\ }

o
1
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TABLE [*
TroporTion oF THE CASES IK A Normar DisrrmsurioN LyiNg BELOW CERTAIN
VALUES OF THE ABSCISSA

Abscissa Proportion Abscissa  Proportion Abscissa  Proportien
XM 5 of cases | X — M _ of cuses | X — M Ofrl.,ls’;:k
8 helow z S T F  biows s °F belgw z
S ¥ Ns
I L™
.00 5000 1.25 L8044 2505 9938
05 .5199 1.30 .9032 2458\ ¢ 0046
.10 .5308 1.85 8115 240 .0U53
15 L5508 1.40 9192 (265 90860
.20 L5793 1.45 ,9265 2.70 0065
A
.25 . GORT 1.50 ‘9%2;. 2.75 9970
.30 6179 1.55 3 280 0974
.33 6363 1.80 N5 2.85 L9078
.40 6554 1.65 L\ . 9305 2.90 o8t
45 6736 1.70_ 0N L0554 2,95 G084
.50 6915 1975 .9599 3.00 0087
©.Bb 7088 ~ 1.80 L9641 3.05 R0
.60 7257 ( 1,85 0678 3.10 JBUN0
.65 a2z ([N 1.90 4713 3.13 902
.70 AN 105 L0744 3.20 L9003
75 7734 2.00 L9772 3.25 5004
80 . ANeest 2.05 97U .80 L0095
85 /0 .8023 2.10 0821 3.35 0906
aa O 8189 2.15 L0842 3.40 L9907
RENNN - 2.20 9861 3.45 0007
1500 B4l 2.25 0879 3.50 0008
105 ,353? 2.30 9803 3.55 9998
\J L1 8643 2.35 19906 3.60 9008
1.15 L8740 2. 40 0018 3.65 .g;m;;
1.20 8840 2.45 9020 3.70 099

: .1 K] {aui For the cxtensted tabls
* Tahle ar d by Dr. 1 W. P Jaci son an 1ngel it Lis permlls:iton. ) extens)

and for othet bables of %h?xioi?a??ﬁwe {hio roader iv Toferred tothe taplc‘igﬁ s l.joyr hn{}n&ﬁiéﬁ?%mﬂ?ﬁé;‘
{Of f!aﬁszmans ol Beomelrigians, Pars L issd by the Biometric LabOTaters,

A0 on.
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TARLT 1T#*
hermirUrioN oF f

Probatality

Al

31

]

12.04)
B.610

(. B59

it
403
041
TRL
337

N ]

4,437
3.8
4,281
4.140
4.073

4.015
3,965
3,022
3.BR3
4. BA0

Bl
4.792
THY
Vi
723

3.
a

L= = I o

[y P

7
6O0
674
§59
(k&

34t

480

378
241

) LG8 g T G o5 i) 3 L2 N Jhn Ly .1l
1 L1538 428 510 (TET 5,000 L3700 | 8063 3. 078 G.511 TdoTiiE G821 B3 657 G36.610
2 L1422 B8G 445 BT R4 T.081 L3806 1.880 2. 020 Nt | O TR AT T T N B {2 3
3 13T U2¥T 424 584 7GE TR O1.2R0 1, N B aEN
4 L34 271 A4 L5800 (T4 SRR 1.1t 1. F EONERY
) L1320 267 408 359 727 L0200 1,150 0. t g2
i} 131 285 (404 UB53 LT18 AnG 1,134 o TOT
T L1300 283 402 5480 T11 CROG T 1D J L
2] L1300 .2682 309 U846 L TOG JEED LR
9 L1200 281 398 543 703 JESR LI
10120 .260 49T (B42 70D BTOO Y003
11 .120 260 396 .50 607 L&76 1,085 1K
12 128 259 3058 520 .ses CBY3 1083 iy R
13 L2 250 304 B3R fud JBTOO1.079 i 2o 5012
14 L1288 25B R63 04T 602 LB68 1 076 2145 2 oniva 2 97T
i3 J128 258 293 536 691 LEBA 1,074 IS IR C I HIE R )
14 2B Z2RB 302 (BRE 600 JBAS 1.07L 2.1 2
i7 L1228 .257 592 . B31 BRO LB 1,069 LN NS
18 127 28T 302 B34 BER LBBE 1 0ART oo
149 L1237 257 391 .BS3 L OER L&A1 L0661 Lonns 2
20 127 257 391 B33 68T L8600 1,004 2,085 2.
21 12T 257 301 .532 686 -850 .063 1.323 1.721 080 F 2,831
22 127 236 3090 532 _6SA S 1,061 1,321 1717 1LTL 2. 2 ELe
23 JIZT U250 390 BRZ 6ES ".S’EJS 1080 1.31% t.714 N VY T 2807
24 L2V 236,300 531 .G85 - A7 1,039 1.318 1.711 2.l 2 2OT0T
25 J12F 0250 .390 531 AR4d LEIG 1L00E 1,314 1,508 20060 2. 2 TET
26 L1127 .255 390 631 ,.694\ CBSGOLLOBR 10515 1.T0G 2.0aG 2, 2779
27 1372360 289 B3 \6!%'-1 LE3E 1.057 1.314 1,703 2 {2 T 2,771
28 J127 0256 .36Y &530°N\.6M3 LBEE 1086 1,313 1.7 ERE 1 2 5. T 2 TES
29 V127258 880 ;53@ CRB3 BS54 10553 1,311 1,609 2oL 2, 2T
an V12T 256 .3S?~.,x530 LGRS LBSL 1053 1210 1,607 2. 013 T 2, Ta0
A\ S
410 .12 .255’ ?88 Lh24 0 asl LRAL LA L, 303 1.6 r, 2, 2. 7L
Gl 126 .254'\,3'87 VBT 67O CEAE 10 1,308 LOGTL 2 R 2. 6060
120 125 @Z54V356 526 077 845 1.041 1.289 1.65% 1 2 z.817
® .126\35& (385 524 AT S42 1.0B6 1,982 1,644 1.¢ 257G

2 8

* :J_:Eﬂ.'ble LE is reprinted from Table IIT, Tistribution of ¢, in Tisher ond Yolos, Statistical Tables for
Bighvgical, Medical and Agrictltural Research, Oliver & Buyd, Lul., Ldinhurgh, by pormission of the
“nthers and publishers.
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14 |.1301.307|.564).649|.711 755/ . 787}\812| 852 861 890 918,946 .073(1.000

16 |.136|.405(.561}.655],716, 758 7()1 .816:,835( . 863(.892/.920).047|.974 1.000
18 |.142(.412|.567|.660|.721] .783(.705|. 819! . 838| . 864|. 804|.021|.048|.974/1.000
20 |.147|.418(.573].665|.725 (’767 798|.8221 840/ .868(.896/.022|.049|.975|1.000
22 1. 152].424] 577].660( 7280 770| . 800|. 824 . 843. . 870! .897|.024|.950|.975(1.000

1

1

1

1

24 |.156).428|.581 SGT20731). 7721, 802). 826 844, 8727 8BIR|. 024 .950{.975(1.000

26 |.160|.433].585 ,67‘"734 .775].805|.828|. 846/ 873|.899. 925, 951(.976|1.000
28 |.183|.437|.5 \578 .736|.777(.807|.820|. 848|. 874|.900(.926|. 951|.976/1.000
30 |.166].441| 592v681].739(.779|.800(.831|.846|. 876|.901|.027|.952|. 976(1.000
N
“ E § “0 I_-
‘ \'.\ H (S
Cl‘l doh Ly = <L where S = L E(X — X)2 Nots: TFor n=12%
LE

| ‘ \ ". o E (5:7)

‘. "e 50&11(1[105—' 187
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367
TABLE V (Confinued)

14, limits of L;
f\1234567891114192959x
ﬂ‘____ ]

. ol gl a5 |8 |7 |8]9|10]1215)20)30[60] =
9 | 016|141/ 284| . 308|.485|. 51| .603|. 645|.678|. 730|783/, 836. 890). 9451000
3 62| 31| 420|514t 578).628| .667).699| . 748|. 798| 848/ 898| 04011 .000
4 1830 345| 459|. 542|604 652).689]. 719].765/.812|.8501.906). 953|104
5 910/ 370! 484] . 565|.624|.670(.706|.735).779;.823).867).011.95001 . 0BO
8 ‘930l 391 504|. 583].541;.685. 7201, 748| 789|852 874 .916 _Q58{1000
7 16, 100| 520|597 654|697, 730|.757|. 798| .830).879). 920/ 60 000
8 "960|.424|. 534|610}, 665].707|. 740} . 766|.805].844) 884 9231062(1.000
9 273l 427 55| 620| . 674].715]. 747|.773]. 811} 840). 887, 9% .96311.000

10 | 053] 284].448| 555|. 620].682|,722|.753|.779|.816|. 853 .\SQD "627|.964(1.000
12 |.071) 303| 167|. 572].644].696|.784]. 764 .789) 824 860/, 808(.931/. 96611000
14 | 079| 318].481| 535],655|.706| . 744(.778). 796 3& \865|. 900} . 933).967|1.000
16 | 087| 331| 403| 506| 665].714] 751|779 802,830 870 .903).936|.968(1.000
18 | 003l 312|504/ 605|,672|.721|.756]. 784/,807).830] .87 .005/.937|. 9691 . 000
20 | 100] 352| 5121 613|.676| 727|761 783N 844). 876 .908|.9301.970(1.000
23 | 103 360| 520 610|.684].732).765 702814847 . 878 .909].940(.970[1.000
91 | 110|367 526 624 . 685|.736. 768/ 705|817 850). 880 011|941, 971{1.000
26 | 113| 373|532 629|.693|. 740|772 708! 820, 852 .882|.012(.042).9711.000
28 | 110l 379! 537|.634|.697). 7440776 802|823/ 854 g84{ 914| 043|.972(1.000
30 | 123| 386| 543| 630|.703|.748}.781).806|.827| 856 886/, 915|.944( 972/1.000

4 ——_-_-_-__—-____._-___________________.

Note: F 2,k and I.
oter Forn = 2, k = Hand l.u
K

# Thoso tables ate reprodu::‘,ed, b
Neyman and E. 5. Pearsofignd issu
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INDEX

A

Agreement, eocfficient of, 177
ealeulation of, 178
gignifieance of, 178-179
Aitken, A. G, 167
Alexander, H. W., 147, 823
Amount of information, see Tnformation
Analysis of vaiiance:
application of, to testing:
differentinl educational development
by grades, 246-252
horogeneity of multiple groupd of
measurements, 231-234
independence  of mental ages of
twins, 226-230
linearity of regression of final on
initial scoves, 241-246
assumptions underlying, 164, 212, 218,
219, 226
compared with traditional biometric
method, 216

Jivigion of degrecs of freedom in, 2143P

2156 RN
division of sums of squares in, 235, 216,
220 Q

cxperimental and sampliﬁgx\designs
dependent on, 210 XN "
P-test, or #-test In, 502
interaction in, 222,924, 265
k-way clagsificatiom 224
the solutionrior/the sum of squares,
224, 225\
one-way e ication, 21%
maxinn likelihood solution of, 219
hﬁ)(ﬁhesis tested, 220
,randpmization in, 164
V\%o—wuy classification, 221
maximum likelihood solution of, 221
hynothesis tested, 222, 223
unegual representation in the sub-
clasges in, 260-261
Analysis of variance and covariance:
application to testing differential edu-
cntional development by grade,
2523-260
complete procedure for analysis with
one independent variahle, 252-255
complete procedurs for analysis with
two independent variables, 236—

260

Analysis of variance snd covarianee
{eont.):
application to testing couality of grade
means and school means on @
speed of reading test {approxi-
mate method fer uncqual fre-
quencies in gubclasses of ( Iwo
classifications), 201265
application to testing idenblgal twin
achievement when dnequélity in
mental age is elimindted, 235-240
Analysis of covarianced N
assumptions undefmng, 235
principles of, 216,285
process of, 16%/
parpose of \N218, a1
Analysis, o.§m‘iati0n :
appli¢ation of, 21 1-216
asshgnable causes of, 214
dhgnee causcs of, 210

A s \fmndamental problem in, 211

hypothesis tested in, 213
rolo of statistics in, 212
test, of significance in, 213, 214, 216
Ancillary estimation, 107
Anderson, R L., 325
Arbitrary eorrections, 277
Arithimetic mean, see Mean, arithmetic
Assumptions, testing of, 17, 81
in analysis of variance, 212, 226, 280
in equivalent-form method, 127, 128
in experimental desigh, 284
in ranking, 166, 169, 170
in sampling, 199
in split-test method, 127
underlying most statistieal methads,
155
underlying prodiet-moment coeflicient
of eorrelation, 241
Attitudes, measuring jutensity of, 183

B

Pacon, Sir Franels, 62

Bartlett, M. 8., 102, 167, 356
x? {or multiple clagsification, 94
testing homogeneily of variances, 83

Baxter, Brent, 325

Bayes's postulate, 25

Bayes's theorem, 24

Beall, Ceofirey, 358

369
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Behrens-Fisher test, 73
Behrens, W. U., 102
Bernouilli, theorem of, 20
Betu eoeflicient:
measure of kurtosis, 149, 151
measure of skewness, 148, 151
sampling distribution of, 151
Bets function, incomplete, 118
Bias in:
cxtimation, 39, 41, 281
sampling, 188, 197
statistical tests, 167
Binomial distribution, 23, 26
limiling form of, 27
moments of, 56, 57, 8
Biserial phi-coefficient, 146
Biserial r, 146
Bishep, D. J., 102
Bliss, C. 1., 168, 356
probit in testing normality, 160
transforming rapks, 166
Doltzmann, L., &
Rose, R. C., distribution of D%, 344,
356
Brandt, A, T, 102
Brandt and Snedecor, method of caleulat-
ing x% 94 ™

C \\ \

Carlson, W, 8., 325 L
Census of population, 1850\
Central Limit Theoreng, %7.. }
Chapin, F. Stuart, 326\
Chi-square, see x> )
xi-distribution: {7;
combining irdaptndent tests by, 170-
172 )
correctidn ¥or continuity in, 94
curvy v 42
In g% ¢ contingency tables, 94
AR K 2 tahles, 91, 93
AN testing:
} agroement of observation and hy-
pothesis, 96
goodness of fit, 37, 39, 42, 45, 48, 51,
56, 205, 206
homogeneity of frequency distribu-
fiong, ¥4
hypotheses, 91, 96
normality, 149
principle of elassification, 91
properties of, for cetimation, 116
separating individual degrees of iree-
dom in, 95
Cireular triads, in preferences, 177
Classification, 343
Cochran-Cox, test for equality of means,
74-T5

INDEX

Coelhran, W, (i, 208, 225, 3506
on eorreetion for contimtity, 94, 102
on log transformation, 163, 163
on subzampling, 182

Cohen, J. 13, 208

Collar, A I, 147

- Comples experiments, 276, 2696

Concordinee, coeflielent of, 174,
{see also m-rankings)

Lesting signifieance of, 175
Confidence cocfiicient, 111
Confidenee inlerval:

compared with filueial limjtg\112

compared with teleranegliubits, 123

for coefhvient of correlaticy, 111

for dificrenee in pergtubadis:

on different samplee, 120
on same sampliil 10
for individupl@trae seore, 117
for meau, poptlition varisnce known,
IR

for nglj:m, 117

for e parameter, 11 1

Jgr severa] parnmeters, 112
Wineiple of sclection, 111

S theory of, 110--112

Confidence region, 112
Consistenee, coefficient of, 176
significance of, 177
of choices, 180
Consistent, see Istimation
Control (s):
in experimentations, 278
in parposive sumpling, 191
Cornell, T. G., 143, 208
Corrclation, coefficient of product-mo-
tent:
combining cstimates of, 53
confidenee interval for, 141
Tisher's transformation of, 52
maximum-likelihood estimate of, 123-
125
sampling distribution of, 48-52
standard error of, 51
tables of (David), 141
testing assuroptions underlying,
243
testing significance of, on different
samples, 53, 86
testing significance of, on same sample,
51, 87
Correlation cosffeient, multiple, 328
cquation of, 329
teating significance of, 838, 339:_341
Correlution eocficient, partial, 355
Corrclation intra-class, 230 .
Correlation, rank, Spearman’s cocficient
of, 169
as a test of gignificance, 170

241~
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Correlation, rank  (cont.}:
testing significance of, 170
Cortelation ratio, 147
for ranked data, 173
Cowden, 1. J,, 208
Cox, G. M., 275, 357
Craig, A. T, 208
Crileria:
of normality, 149, 153
of oplimum estimates, 105
Critical region, see Statistical hypotheses
Crump, 8. L, 275
Curtiss, J. H., 164, 168

D

D2-statistic, 344
Darwin, Charles R. and Law of Large
Numbers, 4
Thay, B. B., 357
Degrees of frecdom:
geometric interpretation of, 139, 140
physical interpretation of, 135
statistical inter pretation of, 140, 141
Deming, W, E., 208, 280
on errors in sampling surveys, 197
Design of experimenta:
modern ideas of, 276

$

nature of experimental observations, |

278 )
orthogonality in, 295, 306 A
randomization in, 282, 286 o«

test of significance depen

282 \ ]\}K

validity of methods of least squares

dependent on, 2847
relation of statigfichl analysis to, 282

necessity of\'tla%mét- tests and analysis

of vafiance, 283
replicatigfi\function of, in, 280, 286
role of‘s&p,tistic-ian in, 285
sclf-eantaincd property for, 277
Aamttion of controls, 278
\ valid estimate of cxperimental eTToT,

280

Design of sampling inquiries, 186, 12
a vomparative experiment o1l sampling
methods, ilustrative of, 202-207
{(See also Sampling)
method of selecting gample, 203
dratification proportienate to num-
hers, 204
stratification proportionate to prod-
uct of numbers and standard

deviation, 205

stratification with no restriction,

N\
ent on,

371

Differcnee of two corrclation coefficients:
sampling distribution of, 53
test ol:
on different samples, 53, 86
on same sample, 54, 87
Difference of two means:
sampling distribution of:
with kmnown population variance,

37
with unknown population varianee,
47
test of: ~
of correlated measures, 75, 76
of equal variances, 73-75 /A
of unequal varisnces, 8@ ‘s alss

Behrens Fisher test 4nd ‘Cochran-
Cox test) R
Difference of two percéhtages:
sampling disteibution of, 58-59, 165
test of, 80-81,A2
Differcnee of tFg\egression coefficionts,
test of, ‘Gl
Differencey o6 two variances {or standard
devidtions):
samplihg distribution of, 54, 55
tastof, 81, 82
_Difitrences among set of variances:
3 sampling distribution of, 83, 84
test of:
Burtlett’s test, 83, 84, 85
Hartley’s method, 84, 85
Li-test, 83, 86
Dircct probability, see Probubility
Discriminant function, ses Multivariate

analysis

Disproportionate class npumbers, see
Analysis of variance, unequal rep-
resentation

Distribution, curves, 28
problems of, 104
Distributions:
binomial, 25
polynomial, 26
simultancous probahility, 124; {sce also
binomial, Poisson, and normal, 25,
26, 27)
theoretical, 22
Doolitile method, see Normal equations
Duncan, W. J,, 147
Dwyer, P. 8., 337

E

Fden, T., 225
Lfficiency (see alse FEstimation):
of pairing, 80

203
atatistical aspects in,
Dice, throws with, 21

193, 199

of sampling, 192
Wisephart, C,, 68, 225
Engelhsart, M. D., 326
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Lirrors {see also Sampling):
experimental, 280
of bias, 188
of first and second kind, 64
theory of, 27
Estimates:
best lincar, 193
large sample, 31
of a ranking, 175
optimur, 105
unhiased, 41°
stimation:
bias in, 39, 41, 281
conaisteney in, 105
cfficiency in, 105
interval, 104, 100, 111; (see afso Con-~
fidence and Fidueial)
point, 104
limitations of, 108
problem of, 15, 104, 183
analysis of varianee in, 275
sufliciency, 105
Estimation, method of {see also maximurm
likelihood):
by minimum x?, 107, 103
by minimum varianee, 107
by moments, 107

by prineiple of unbiased estimates, 10};“’

Expectation, mathematicsl, 22, 39, {06,
103, 228, 346 Ny

2

\Y
'iu’
Factor analysis (ps;;chol%}), 353
Tactorial design, see Eripciples of experi-
mentationsy \' -
F-distribution Q\f\ﬁ,l'iance-ratirj), 55
Ferguson, C}."{\z, 162, 168
Fiducial inférenee, theory of, 109-110
Fiducial dmits, 109
compared with confidence interval,
RN
#sfvan individual's seore, 343
\of the mean, population varianec un-
kuown, 114-115
of the variance, 115-117
Fidueial probabilily, 109
Finney, D. T, 142, 162
Fisher, R. A, 102, 147, 168, 208, 225, 275,
285, 326, 357
analysis of covariance, 216
analysis of varianee, 210
applications of Student’s distribution,
61
design of experiments, 277, 278, 231
diseriminant function, 344
distribution of x* when parameler
estimated from data, 108
fiducial infercnce, 109

F

9

INDEX

Trisher . A. {rond):
fe-statistios, 153
measurement of information, 105
measares of departure from normality,
153, 155, 156 157
table of £ 360
tubles of x? 361
z-distribution, 51-55
Forceasting, 3
Four-fold peint surface, correlation of,

144
Trazer, 1t A, 147
Treedom, degrees of, see Dhfrrgns  of

frecdom a
Freeman, ¥. N, 275 AN
Frequency theory of sotwlnhiliby, see
Probability ¢ &
Triedman, M., 172188

R

g, o mnn.wrc ol sleewness, 153, 151, 161
g 0 mffagiie of kurtoss, 154, 161
Coddiaty, J. H., 160, 163, 161, 168
Gulegn, Sir Trrancis, 7

Gatumn funetion, 44

W(arreit, . L., 326
\ Claussian etror eurve, see Normal

curve

Causs, K. I, 28

Generalized distance of BMahalanobis, 344

Gibbs, Willard, &

Goodness of fit, test of, 63

Goulden, C. ., 3206

Creco-Latin - square,
experimentation

Guttman, L., 183

see Principles of

i3]

Handy, L. M., 102

Tansen, M. H., 208, 209

Harmon, H. T, 333

Hartley, H. 0., 102

Heterogeneity, condition of, 211

Holzinger, K. J., 275, 363

Homogeneity, condition of, 211

TTomogeneity of variance, asstimprtion of,
211

TTorst, P., 367

Hotelling, H., 11, 61, 183, 326, 334, 357

Hotelling's T, see Multivariaie analysis

! Houseman, . T, 325

TMoyt, . J., 134, 148

Hzu, P. L., 102

Hudelson, Earl, 21

Hurwitz, W, N, 208

Typothesis, role of, in selenoe,

Hypothesis, testing of, see
hypothesis

62
Statistieal
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1 Law {(cont.):
o of small numbers, 27
Inference, 12, 14, see Statistical hypothe- second law of thermodynamics as 2

slatistical, 5

sl
In_Formu,t-ion: Least squares, principle of, 28, 176, 284
in gmall samples, 105 328 ' ’
invariance ag measure of, 105 Lchmer, E., 68
relevant, 104 Lew, I. A., 209
Intelligence, distribution of, 160 Likelihood ratio tests of an hypothesis,

Tnteraction, see Analysis of variance 66, 67, 68; (See L-tests)

Intra-class correlation, see Correlation Lindquist, B. T, 209, 326

Thverse probebility, 109 Linear junetion, 27, 28

Ttem analysis, statistics used in, 147 Linear hypothesis, lesting, 244
Linearity of regression, se¢ Regressim\

J Linear scale, 155

Location, cstimation of parajaeters of,

Jackson, k. W. B., 148, 275, 367 193 D)

test of sensitivity, 129 u O

Jessen, R J., 208

Johnson-Neyman. technigue, 275 | m-rankings, the pmhlg"rr’l' 3f, 174

Johnson, P. O., 188, 275, 326, 355 MeCall, W. A, 16{; )
McKendricl, A0 208
K AaeKenzie, W A, 226

MeNemar, ‘QunI, 200
Madhva, B 5., 209
Madgwy L., 209

Madew, W. G., 209

k-stublstics:
definition, 154
general properties, 153 .

sampling cumulants of, 154 ,Mah&lanobis, p. C., 61, 191, 194, 209,
Kelley, T. L., 146 R ST
Kendall, M. G., 16, 30, 183, 208, 209 b Markof, A., 108, 194
multiple rankings, 174, 178 ) | Marks, E. 8., 207
paired comparizons, 176 - Martin, W., 357
S MViaung, K., 357

randomness, 187
Mazimun likelihood:

random sampling, 200 Y

rapdom sampling numlfn'\f&,ﬁ(ll estimate, 106

Kermaek, W. 0., 208 & consistency of, 106
N/ efficiency of, 108

Kinsey, &, C., 20

L5 A
Rotleftiv of von Nistsy 19, 25 function of parameters, 106

sufficiency of, 106

Koimogorof, Apaa ) )
probabi ity nd smbstrach ensembles, 20 Maximum likelihood method in estimat-
Kuder, G, 148 ing parameters of a mnormal
R\ correlation surface, 123
Ny 1 Maximum fikelihood, prineiple of, 25

i :,\‘ ' i Mean, grithmetie:
&t:ésts, 83, 128 distr‘gk;}ltion of, in normal samples, 33—

Lagrange's andetermined maultipliers, 219, )
‘ interval estimation of:

921, 223, 227 ; _
Laplace, 2%, 28 from population of known variance,
La.placian-Gaussian GrTOT CUrve, 568 Nor- 112
mal curve | from population of wnlkmown vari-
ance, 114

Latin square, 866 Principles of experimen- | )
i significance o:

tation
Jaw: from a known normal population, 6%
pinomial, 26 from an unknown normal popula-
of chance, 3% tion, 71
of error, 28 from a small finite popualation, 71
regressed mean, 91

of large numbcers, 27
of nature a8 stutistical regmlarity, 4

of single variable, 277

gulficient sctimate, 106
Mean square contingeney, 146
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Measurcment:
of exeeptionalness, 57
of mental gualities, 158, 159
role of statistics in, 5-6
Median:
confidence interval for, 117
probability of, 110
Merrington, M., 61, 103
Minimum, ahsolute, 228, 233
Minimum, relative, 228, 233
Mises, IR. von:
Kollekizv, 25, 30
probability as limit in frequencies, 19
Moments:
binomial, 56
corrections in, for grouping, 150, 153
definition of, 150
efficiency of, 107
method of, in ftting normul curve,
149
of normal distribution, 155
Muhsam, H, V., 168
Multiple correlation, se¢ Correlation
Multivariate analysis:
diserisninant function, 343
illustration of, in a t\\c- -group prob-
lem, 347-333

mathematical derivation of, 344-345 (N3
rvelation to theory of regressiom, 344 A

generalized distance function, D2, 34;1
Tlotelling’s 7', 344
gignificance of sot of means, 3{3
N \\
WNagel, Ernest, 30 s\
Nair, K. R, 148 MN\J
Nair’s Tahlos for.qmﬁdcncc intervals of
media.nl»(lig
Nair, U. 5., }%2.
Nayer, P. . W., 102
Neymandd,, 68, 102, 148, 209, 275
mnﬁdenc‘e 1nt01vals, 111
p;e'senta.twe method, 194
shfipling from finite popul'ttmn, 191
tegting hypotheses, 64, 66
theory of catimation, 110
Newman, Freeman, and Helzinger, 226
Newman, H. H., 275
Newton, Sir Isaac, 62
Noble, Bister Mary Allred, 357
Nonnormal data:
statistical analysis of, 169
by analysis of variation, 172
by cuefficient of concordance, 174
by method of paired comparison, 176
by rank corrclation, 170
validity of z- or F-test, and é-test ap-
plicd to, 167

INDEX

Normal curve:
Gaussian error, 27
Laplacian-Gaussian error, 27
reproductive property of, 27
table of arcas, 359
Normal distribulion, 27
as limit of binomial, 27, 58
Normal equations, 328, 320
Doolittle method of solution of, 330, 333
use of auxiliary quantilies in, 330, 331
Normality:
of hurnan traits, 160
muthernatical conditions for, 149
Losls of, 149, 153, 155157, 100
\Tommlvahon of frr‘quonc\ 1‘\11){’th11 see
Transformalion )
Normal probability eurgapd4d
as u close appmmmﬂfmn 155
Norton, H, W, 04y “102
Null hypothosmkégsﬁi 217

0

AY;
Ockha ,Tb
Olds}.E, G., 183
Ordinal munber 200
LOriiogonality, see Prineciples of experi-
mentation

P

Parameter, 33
degrees of freedom, as a, 46
estimation of, see Fatimation
represented by a Greek letter, 33
Trartial correlation, 356
Partial regre:smn coefﬁucntq 324
Partial regression equation, see Multiple
regression
Pearzon, E. 3., 68, 102
on testing hypotheses, 64
prineiple of likelihood, 66
sampling d_L.stnbutlons of Beta statis-
ties, 131
variation ana] yaig in industry, 223
Pearson, Karl, 30, 148, 168
development of the x*test, 108
method of morments, 107
rank eorrelatlion cquivalent, 169
test of normality, 149, 152
Percentage, experlmental errors of, 184,
165
Peterson, A. 3., 102
Pillsi, K. C. 8., 141
Plesset, 1., 102
Poisszon distribution, 26
caleulations for, 97
moments of, 27, 165
transformations for, 165, 166
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Population:
as bawis of statistical theory, 18, 19, Q
187, 200

continuous, 187
existent, 187
finite and infinite, 187
hypothetical, 22
Power of o test, see Qiatistical hypothesis
Precision of an cxperiment, 281
Prediction, 827; (see also Principles of
experimcntation)
in seience, 62
of elcctions, 190
Principles of experimentation, applica-
tion of (Jee also Design of Experi-
nments)
factorial design, 206
ellicicney and comprehensiveness of,
207208
illustration of a 4 X7 X 2% 2 X2
design in psychology, 208-310

problem of prediction lustrated in:
orthogonal

polynomials for deter-
miping regression equation, 303~
309
splitting up degrees of freedom into
orthogonal components, 308-
310
factorial design and covariance:
lostration of, in a 2 X 3 X
design, 311-524
Greco-Latin square, 293
erthogonality in, 203
Latin square, 202295
randomized-block arkan ment, 287-
292 \J/
single factor exparitent, 286287

o

) i... \

gymmetrical eomplete randomized
block dedign,; 262
Probability\}

hagic rl;ic}u‘of direct, 23
definitien of, 18-20
_experiment in, 50
\fﬁlﬁuial, 112
verse, 109
of crrors of the first and second kind,
B4
posterior, 24
prior, 24, 25
range in value of, 24
role of, in statisties, 14, 18, 32
statements in interpretation of, 22-
statistical digtributions and, 22, 104
Probits, 160
use of, in testing normality, 161, 162
Problems {or solution, 29-30, 60-61, 97—
101, 141-147, 266-275, 324-325,

353-356

Quality control, tolerance limits in, 123
Quantum statistics, 5
Quctelet, A, 28

R

Randomness, 22, 25
a8 criterion of sample, 187
definition of, 187
tests of, 188
Random sampling numbers, 201
Random sampling, seé Sarmphng,
Hegression: 2\
eriterion for linearity of (245 ~
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